Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275636

RESUMO

Type 2 diabetes mellitus (T2DM) is a prevalent and complex metabolic disorder associated with various complications, including cardiovascular diseases. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP1-RA) have emerged as novel therapeutic agents for T2DM, primarily aiming to reduce blood glucose levels. However, recent investigations have unveiled their multifaceted effects, extending beyond their glucose-lowering effect. SGLT2i operate by inhibiting the SGLT2 receptor in the kidneys, facilitating the excretion of glucose through urine, leading to reduced blood glucose levels, while GLP1-RA mimic the action of the GLP1 hormone, stimulating glucose-dependent insulin secretion from pancreatic islets. Both SGLT2i and GLP1-RA have shown remarkable benefits in reducing major cardiovascular events in patients with and without T2DM. This comprehensive review explores the expanding horizons of SGLT2i and GLP1-RA in improving cardiovascular health. It delves into the latest research, highlighting the effects of these drugs on heart physiology and metabolism. By elucidating their diverse mechanisms of action and emerging evidence, this review aims to recapitulate the potential of SGLT2i and GLP1-RA as therapeutic options for cardiovascular health beyond their traditional role in managing T2DM.

2.
Biology (Basel) ; 10(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34439990

RESUMO

A promising approach for the development of high-affinity tumor targeting ADCs is the use of engineered protein drugs, such as affibody molecules, which represent a valuable alternative to monoclonal antibodies (mAbs) in cancer-targeted therapy. We developed a method for a more efficient purification of the ZHER2:2891DCS affibody conjugated with the cytotoxic antimitotic agent auristatin E (MMAE), and its efficacy was tested in vitro on cell viability, proliferation, migration, and apoptosis. The effects of ZHER2:2891DCS-MMAE were compared with the clinically approved monoclonal antibody trastuzumab (Herceptin®). To demonstrate that ZHER2:2891DCS-MMAE can selectively target HER2 overexpressing tumor cells, we used three different cell lines: the human adenocarcinoma cell lines SK-BR-3 and ZR-75-1, both overexpressing HER2, and the triple-negative breast cancer cell line MDA-MB-231. MTT assay showed that ZHER2:2891DCS-MMAE induces a significant time-dependent toxic effect in SK-BR-3 cells. A 30% reduction of cell viability was already found after 10 min exposure at a concentration of 7 nM (IC50 of 80.2 nM). On the contrary, MDA-MB-231 cells, which express basal levels of HER2, were not affected by the conjugate. The cytotoxic effect of the ZHER2:2891DCS-MMAE was confirmed by measuring apoptosis by flow cytometry. In SK-BR-3 cells, increasing concentrations of conjugated affibody induced cell death starting from 10 min of treatment, with the strongest effect observed after 48 h. Overall, these results demonstrate that the ADC, formed by the anti-HER2 affibody conjugated to monomethyl auristatin E, efficiently interacts with high affinity with HER2 positive cancer cells in vitro, allowing the selective and specific delivery of the cytotoxic payload.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA