Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 145(2): 337e-347e, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31985634

RESUMO

BACKGROUND: Three-dimensionally-printed bioceramic scaffolds composed of ß-tricalcium phosphate delivering the osteogenic agent dipyridamole can heal critically sized calvarial defects in skeletally mature translational models. However, this construct has yet to be applied to growing craniofacial models. In this study, the authors implanted three-dimensionally-printed bioceramic/dipyridamole scaffolds in a growing calvaria animal model and evaluated bone growth as a function of geometric scaffold design and dipyridamole concentration. Potential adverse effects on the growing suture were also evaluated. METHODS: Bilateral calvarial defects (10 mm) were created in 5-week-old (approximately 1.1 kg) New Zealand White rabbits (n = 16 analyzed). Three-dimensionally-printed bioceramic scaffolds were constructed in quadrant form composed of varying pore dimensions (220, 330, and 500 µm). Each scaffold was coated with collagen and soaked in varying concentrations of dipyridamole (100, 1000, and 10,000 µM). Controls consisted of empty defects. Animals were killed 8 weeks postoperatively. Calvariae were analyzed using micro-computed tomography, three-dimensional reconstruction, and nondecalcified histologic sectioning. RESULTS: Scaffold-induced bone growth was statistically greater than bone growth in empty defects (p = 0.02). Large scaffold pores, 500 µm, coated in 1000 µM dipyridamole yielded the most bone growth and lowest degree of scaffold presence within the defect. Histology showed vascularized woven and lamellar bone along with initial formation of vascular canals within the scaffold lattice. Micro-computed tomographic and histologic analysis revealed patent calvarial sutures without evidence of ectopic bone formation across all dipyridamole concentrations. CONCLUSION: The authors present an effective pediatric bone tissue-engineering scaffold design and dipyridamole concentration that is effective in augmentation of calvarial bone generation while preserving cranial suture patency.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/uso terapêutico , Dipiridamol/uso terapêutico , Fraturas Cranianas/cirurgia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Dipiridamol/administração & dosagem , Modelos Animais de Doenças , Coelhos , Crânio/efeitos dos fármacos , Crânio/lesões , Fraturas Cranianas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA