RESUMO
Extremophilic organisms require specialized enzymes for their exotic metabolisms. Acid-loving thermophilic Archaea that live in the mudpots of volcanic solfataras obtain their energy from reduced sulphur compounds such as hydrogen sulphide (H(2)S) and carbon disulphide (CS(2)). The oxidation of these compounds into sulphuric acid creates the extremely acidic environment that characterizes solfataras. The hyperthermophilic Acidianus strain A1-3, which was isolated from the fumarolic, ancient sauna building at the Solfatara volcano (Naples, Italy), was shown to rapidly convert CS(2) into H(2)S and carbon dioxide (CO(2)), but nothing has been known about the modes of action and the evolution of the enzyme(s) involved. Here we describe the structure, the proposed mechanism and evolution of a CS(2) hydrolase from Acidianus A1-3. The enzyme monomer displays a typical ß-carbonic anhydrase fold and active site, yet CO(2) is not one of its substrates. Owing to large carboxy- and amino-terminal arms, an unusual hexadecameric catenane oligomer has evolved. This structure results in the blocking of the entrance to the active site that is found in canonical ß-carbonic anhydrases and the formation of a single 15-Å-long, highly hydrophobic tunnel that functions as a specificity filter. The tunnel determines the enzyme's substrate specificity for CS(2), which is hydrophobic. The transposon sequences that surround the gene encoding this CS(2) hydrolase point to horizontal gene transfer as a mechanism for its acquisition during evolution. Our results show how the ancient ß-carbonic anhydrase, which is central to global carbon metabolism, was transformed by divergent evolution into a crucial enzyme in CS(2) metabolism.
Assuntos
Acidianus/enzimologia , Dissulfeto de Carbono/metabolismo , Evolução Molecular , Hidrolases/genética , Acidianus/classificação , Acidianus/genética , Domínio Catalítico , Cristalografia por Raios X , Hidrolases/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Estrutura Terciária de ProteínaRESUMO
Fixed nitrogen is released by anaerobic ammonium oxidation (anammox) and/or denitrification from (marine) ecosystems. Nitrite, the terminal electron acceptor of the anammox process, occurs in nature at very low concentrations and is produced via (micro)aerobic oxidation of ammonium or nitrate reduction. The coupling of sulfide-dependent denitrification to anammox is particularly interesting because besides hydrogen, sulfide is the most important reductant at the chemocline of anoxic marine basins and is abundant within sediments. Although at µM concentrations, sulfide may be toxic and inhibiting anammox activity, a denitrifying microorganism could convert sulfide and nitrate at sufficiently high rates to allow anammox bacteria to stay active despite an influx of sulfide. To test this hypothesis, a laboratory scale model system containing a co-culture of anammox bacteria and the autotrophic denitrifier Sulfurimonas denitrificansâ DSM1251 was started. Complementary techniques revealed that the gammaproteobacterial Sedimenticola sp. took over the intended role of Su. denitrificans. A stable coculture of anammox bacteria and Sedimenticola sp. consumed sulfide, nitrate, ammonium and CO2 . Anammox bacteria contributed 65-75% to the nitrogen loss from the reactor. The cooperation between anammox and sulfide-dependent denitrification may play a significant role in environments where sulfur cycling is active and where actual sulfide concentrations stay below µM range.
Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Desnitrificação , Epsilonproteobacteria/metabolismo , Enxofre/metabolismo , Anaerobiose , Processos Autotróficos , Bactérias/efeitos dos fármacos , Técnicas de Cocultura , Gammaproteobacteria/metabolismo , Interações Microbianas , Modelos Biológicos , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução , Sulfetos/metabolismo , Sulfetos/toxicidadeRESUMO
Promoting soil suppressiveness against soil borne pathogens could be a promising strategy to manage crop diseases. One way to increase the suppression potential in agricultural soils is via the addition of organic amendments. This microbe-mediated phenomenon, although not fully understood, prompted our study to explore the microbial taxa and functional properties associated with Rhizoctonia solani disease suppression in sugar beet seedlings after amending soil with a keratin-rich waste stream. Soil samples were analyzed using shotgun metagenomics sequencing. Results showed that both amended soils were enriched in bacterial families found in disease suppressive soils before, indicating that the amendment of keratin-rich material can support the transformation into a suppressive soil. On a functional level, genes encoding keratinolytic enzymes were found to be abundant in the keratin-amended samples. Proteins enriched in amended soils were those potentially involved in the production of secondary metabolites/antibiotics, motility, keratin-degradation, and contractile secretion system proteins. We hypothesize these taxa contribute to the amendment-induced suppression effect due to their genomic potential to produce antibiotics, secrete effectors via the contractile secretion system, and degrade oxalate-a potential virulence factor of R. solani-while simultaneously possessing the ability to metabolize keratin.
Assuntos
Microbiota , Rhizoctonia , Solo , Humanos , Queratinas/farmacologia , Microbiologia do Solo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Antibacterianos/farmacologiaRESUMO
Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the molecular basis of their metabolism and competitive fitness is presently unknown. We applied community sequencing of a marine anammox enrichment culture dominated by 'Candidatus Scalindua profunda' to construct a genome assembly, which was subsequently used to analyse the most abundant gene transcripts and proteins. In the S. profunda assembly, 4756 genes were annotated, and only about half of them showed the highest identity to the only other anammox bacterium of which a metagenome assembly had been constructed so far, the freshwater 'Candidatus Kuenenia stuttgartiensis'. In total, 2016 genes of S. profunda could not be matched to the K. stuttgartiensis metagenome assembly at all, and a similar number of genes in K.stuttgartiensis could not be found in S. profunda. Most of these genes did not have a known function but 98 expressed genes could be attributed to oligopeptide transport, amino acid metabolism, use of organic acids and electron transport. On the basis of the S. profunda metagenome, and environmental metagenome data, we observed pronounced differences in the gene organization and expression of important anammox enzymes, such as hydrazine synthase (HzsAB), nitrite reductase (NirS) and inorganic nitrogen transport proteins. Adaptations of Scalindua to the substrate limitation of the ocean may include highly expressed ammonium, nitrite and oligopeptide transport systems and pathways for the transport, oxidation, and assimilation of small organic compounds that may allow a more versatile lifestyle contributing to the competitive fitness of Scalindua in the marine realm.
Assuntos
Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Genoma Bacteriano , Metagenoma , Ciclo do Nitrogênio , Planctomycetales/genética , Planctomycetales/metabolismo , Organismos Aquáticos/classificação , Nitrito Redutases/metabolismo , Oceanos e Mares , Oxirredução , Planctomycetales/classificação , Compostos de Amônio Quaternário/metabolismo , RNA Ribossômico 16S/genética , Microbiologia da ÁguaRESUMO
The complete and assembled genome sequences were determined for six strains of the alphaproteobacterial genus Methylobacterium, chosen for their key adaptations to different plant-associated niches and environmental constraints.
Assuntos
Genoma Bacteriano , Methylobacterium/genética , Sequência de Bases , Mapeamento Cromossômico , DNA Bacteriano/genética , Methylobacterium/classificação , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Anaerobic ammonium-oxidizing bacteria were recently shown to use short-chain organic acids as additional energy source. The AMP-forming acetyl-CoA synthetase gene (acs) of Kuenenia stuttgartiensis, encoding an important enzyme involved in the conversion of these organic acids, was identified and heterologously expressed in Escherichia coli to investigate the activation of several substrates, that is, acetate, propionate and butyrate. The heterologously expressed ACS enzyme could complement an E. coli triple mutant deficient in all pathways of acetate activation. Activity was observed toward several short-chain organic acids, but was highest with acetate. These properties are in line with a mixotrophic growth of anammox bacteria. In addition to acs, the genome of K. stuttgartiensis contained the essential genes of an acetyl-CoA synthase/CO dehydrogenase complex and genes putatively encoding two isoenzymes of archaeal-like ADP-forming acetyl-CoA synthetase underlining the importance of acetyl-CoA as intermediate in the carbon assimilation metabolism of anammox bacteria.
Assuntos
Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Planctomycetales/enzimologia , Planctomycetales/genética , Acetato-CoA Ligase/química , Acetatos/metabolismo , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo , Escherichia coli/genética , Teste de Complementação Genética , Filogenia , Planctomycetales/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por SubstratoRESUMO
Pathogenic Escherichia coli strains are responsible for food-borne disease outbreaks upon consumption of fresh vegetables and fruits. The aim of this study was to establish the transmission route of E. coli strain 0611, as proxy for human pathogenic E. coli, via manure, soil and plant root zones to the above-soil plant compartments. The ecological behavior of the introduced strain was established by making use of a combination of cultivation-based and molecular targeted and untargeted approaches. Strain 0611 CFUs and specific molecular targets were detected in the root zones of lettuce and leek plants, even up to 272 days after planting in the case of leek plants. However, no strain 0611 colonies were detected in leek leaves, and only in one occasion a single colony was found in lettuce leaves. Therefore, it was concluded that transmission of E. coli via manure is not the principal contamination route to the edible parts of both plant species grown under field conditions in this study. Strain 0611 was shown to accumulate in root zones of both species and metagenomic reads of this strain were retrieved from the lettuce rhizosphere soil metagenome library at a level of Log 4.11 CFU per g dry soil.
RESUMO
The genomes of three Golubevia isolates (BC0812, BC0850, and BC0902) that have been shown to reduce conidiation of Blumeria graminis f. sp. tritici were sequenced using a dual-platform approach. The assembled genomes will help to elucidate the molecular mechanisms underlying the biocontrol effect of this understudied group.
RESUMO
In nature anaerobic ammonium oxidation (anammox) and denitrification processes convert fixed nitrogen to gaseous nitrogen compounds, which are then released to the atmosphere. While anammox bacteria produce N2 from ammonium and nitrite, in the denitrification process nitrate and nitrite are converted to N2 and the greenhouse gas nitrous oxide (N2O). Furthermore, nitrite needed by the anammox bacteria can be supplied by nitrate reduction to nitrite. Consequently, the interplay between nitrogen-transforming microorganisms control the amount of harmless N2 or the greenhouse gas N2O released to the atmosphere. Therefore, it is important to understand the interactions of these microorganisms in the natural environment, where dynamic conditions result in fluctuating substrate concentrations. Here, we studied the interactions between the sulfide-oxidizing denitrifier Sedimenticola selenatireducens and the anammox bacterium Scalindua brodae in a bioreactor mimicking the marine environment by creating sulfide, ammonium and nitrate limitation in distinct operational phases. Through a microbial interaction, Se. selenatireducens reduced nitrate to nitrite, which together with the supplied ammonium was converted to N2 by Sc. Brodae. Using comparative transcriptomics, we determined that Sc. Brodae and Se. selenatireducens had significant responses to ammonium and nitrate limitation, respectively, indicating that the activities of these microorganisms are regulated by different nitrogen compounds.
Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Água do Mar/microbiologia , Sulfetos/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Desnitrificação , Interações Microbianas , Modelos Biológicos , Nitratos/metabolismo , Nitritos/metabolismo , Óxido Nitroso/metabolismo , OxirreduçãoRESUMO
We present the draft genome of anammox bacterium "Candidatus Scalindua brodae," which at 282 contigs is a major improvement over the highly fragmented genome assembly of related species "Ca. Scalindua profunda" (1,580 contigs) which was previously published.
RESUMO
Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the "Candidatus Scalindua" genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers.