Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 44(21): 5222-5225, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674973

RESUMO

We present a power-scalable laser source with 30 fs pulse duration, 530 W average power at 500 kHz repetition rate, and beam quality M2<1.2. The compact and efficient setup consists of ytterbium-based Innoslab amplifiers and subsequent nonlinear pulse compression with an argon-filled Herriott cell.

2.
Opt Express ; 26(13): 16074-16085, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119444

RESUMO

We developed a high repetition rate optical parametric chirped-pulse amplification (OPCPA) laser system based on fiber-laser-seeded Innoslab to generate few-cycle pulses around 2 µm with passively stable carrier-envelope phase (CEP) by difference frequency generation (DFG). Incorporating a piezo mirror before the DFG stage permits rapid CEP control. The OPCPA system is seeded by a stable supercontinuum generated in bulk material with the picosecond Innoslab pulses. Few-cycle pulses with durations of 17 fs and energies of over 100 µJ were produced in a single OPCPA stage. Three different nonlinear crystals: BBO, BiBO, and LNB were tested in the final parametric amplifier, and their average power related limitations are addressed.

3.
Opt Lett ; 36(13): 2456-8, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21725443

RESUMO

We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.

4.
Opt Lett ; 35(24): 4169-71, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21165126

RESUMO

We demonstrate a compact diode-pumped Yb:KGW femtosecond oscillator-Yb:YAG Innoslab amplifier master oscillator power amplifier (MOPA) with nearly transform-limited 636 fs pulses at 620 W average output power, 20 MHz repetition rate, and beam quality of M(x)(2) = 1.43 and M(y)(2) = 1.35. By cascading two amplifiers, we attain an average output power of 1.1 kW, a peak power of 80 MW, and a 615 fs pulse width in a single linearly polarized beam. The power-scalable MOPA is operated at room temperature, and no chirped-pulse amplification technique is used.

5.
Opt Express ; 17(15): 12230-45, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19654625

RESUMO

The Innoslab design, already established for neodymium doped laser crystals, was applied to ytterbium doped laser materials. Recent progresses in brightness of high power diode lasers facilitate efficient pumping of quasi-three-level laser materials. Innoslab amplifiers are compared to competing thin-disk and fiber fs-amplifiers. A compact diode-pumped Yb:YAG Innoslab fs-oscillator-amplifier system, scalable to the kilowatt range, was realized. Numerical simulations result in conditions for high efficiency and beam quality. Nearly transform and diffraction limited 680 fs pulses at 400 W average output power and 76 MHz repetition rate without using CPA technology have been achieved at room temperature so far.

6.
Nat Commun ; 10(1): 458, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692528

RESUMO

Laser-dressed photoelectron spectroscopy, employing extreme-ultraviolet attosecond pulses obtained by femtosecond-laser-driven high-order harmonic generation, grants access to atomic-scale electron dynamics. Limited by space charge effects determining the admissible number of photoelectrons ejected during each laser pulse, multidimensional (i.e. spatially or angle-resolved) attosecond photoelectron spectroscopy of solids and nanostructures requires high-photon-energy, broadband high harmonic sources operating at high repetition rates. Here, we present a high-conversion-efficiency, 18.4-MHz-repetition-rate cavity-enhanced high harmonic source emitting 5 × 105 photons per pulse in the 25-to-60-eV range, releasing 1 × 1010 photoelectrons per second from a 10-µm-diameter spot on tungsten, at space charge distortions of only a few tens of meV. Broadband, time-of-flight photoelectron detection with nearly 100% temporal duty cycle evidences a count rate improvement between two and three orders of magnitude over state-of-the-art attosecond photoelectron spectroscopy experiments under identical space charge conditions. The measurement time reduction and the photon energy scalability render this technology viable for next-generation, high-repetition-rate, multidimensional attosecond metrology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA