Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Antimicrob Agents Chemother ; 66(12): e0097722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36354349

RESUMO

Candida albicans is an opportunistic human fungal pathogen that causes invasive infections in immunocompromised individuals. Despite the high anticandidal activity among the echinocandins (ECNs), a first-line therapy, resistance remains an issue. Furthermore, many clinical isolates display decreased ECN susceptibility, a physiological state which is thought to lead to resistance. Determining the factors that can decrease susceptibility is of high importance. We searched for such factors genome-wide by comparing the transcriptional profiles of five mutants that acquired decreased caspofungin susceptibility in vitro in the absence of canonical FKS1 resistance mutations. The mutants were derived from two genetic backgrounds and arose due to independent mutational events, some with monosomic chromosome 5 (Ch5). We found that the mutants exhibit common transcriptional changes. In particular, all mutants upregulate five genes from Ch2 in concert. Knockout experiments show that all five genes positively influence caspofungin and anidulafungin susceptibility and play a role in regulating the cell wall mannan and glucan contents. The functions of three of these genes, orf19.1766, orf19.6867, and orf19.5833, were previously unknown, and our work expands the known functions of LEU42 and PR26. Importantly, orf19.1766 and LEU42 have no human orthologues. Our results provide important clues as to basic mechanisms of survival in the presence of ECNs while identifying new genes controlling ECN susceptibility and revealing new targets for the development of novel antifungal drugs.


Assuntos
Candida albicans , Equinocandinas , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Caspofungina/farmacologia , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-29358288

RESUMO

Candida albicans, a prevailing opportunistic fungal pathogen of humans, has a diploid genome containing three homologous FKS genes that are evolutionarily conserved. One of these, the essential gene FKS1, encodes the catalytic subunit of glucan synthase, which is the target of echinocandin drugs and also serves as a site of drug resistance. The other two glucan synthase-encoding genes, FKS2 and FKS3, are also expressed, but their roles in resistance are considered unimportant. However, we report here that expression of FKS1 is upregulated in strains lacking either FKS2 or FKS3 Furthermore, in contrast to what is observed in heterozygous FKS1 deletion strains, cells lacking FKS2 or FKS3 contain increased amounts of cell wall glucan, are more resistant to echinocandin drugs, and consistently are tolerant to cell wall-damaging agents. Our data indicate that C. albicansFKS2 and FKS3 can act as negative regulators of FKS1, thereby influencing echinocandin susceptibility.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Equinocandinas/farmacologia , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Glucosiltransferases/genética , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-28223384

RESUMO

Expanding echinocandin use to prevent or treat invasive fungal infections has led to an increase in the number of breakthrough infections due to resistant Candida species. Although it is uncommon, echinocandin resistance is well documented for Candida albicans, which is among the most prevalent bloodstream organisms. A better understanding is needed to assess the cellular factors that promote tolerance and predispose infecting cells to clinical breakthrough. We previously showed that some mutants that were adapted to growth in the presence of toxic sorbose due to loss of one chromosome 5 (Ch5) also became more tolerant to caspofungin. We found here, following direct selection of mutants on caspofungin, that tolerance can be conferred by at least three mechanisms: (i) monosomy of Ch5, (ii) combined monosomy of the left arm and trisomy of the right arm of Ch5, and (iii) an aneuploidy-independent mechanism. Tolerant mutants possessed cell walls with elevated chitin and showed downregulation of genes involved in cell wall biosynthesis, namely, FKS, located outside Ch5, and CHT2, located on Ch5, irrespective of Ch5 ploidy. Also irrespective of Ch5 ploidy, the CNB1 and MID1 genes on Ch5, which are involved in the calcineurin signaling pathway, were expressed at the diploid level. Thus, multiple mechanisms can affect the relative expression of the aforementioned genes, controlling them in similar ways. Although breakthrough mutations in two specific regions of FKS1 have previously been associated with caspofungin resistance, we found mechanisms of caspofungin tolerance that are independent of FKS1 and thus represent an earlier event in resistance development.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Parede Celular/metabolismo , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Lipopeptídeos/farmacologia , Glicoproteínas de Membrana/genética , beta-Glucanas/metabolismo , Calcineurina/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/isolamento & purificação , Caspofungina , Quitina/metabolismo , Quitinases/genética , Humanos , Testes de Sensibilidade Microbiana
5.
Antimicrob Agents Chemother ; 60(12): 7457-7467, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736768

RESUMO

Candida albicans is an important fungal pathogen with a diploid genome that can adapt to caspofungin, a major drug from the echinocandin class, by a reversible loss of one copy of chromosome 5 (Ch5). Here, we explore a hypothesis that more than one gene for negative regulation of echinocandin tolerance is carried on Ch5. We constructed C. albicans strains that each lacked one of the following Ch5 genes: CHT2 for chitinase, PGA4 for glucanosyltransferase, and CSU51, a putative transcription factor. We demonstrate that independent deletion of each of these genes increased tolerance for caspofungin and anidulafungin, another echinocandin. Our data indicate that Ch5 carries multiple genes for negative control of echinocandin tolerance, although the final number has yet to be established.


Assuntos
Candida albicans/efeitos dos fármacos , Cromossomos Fúngicos/química , Farmacorresistência Fúngica/genética , Tolerância a Medicamentos/genética , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Lipopeptídeos/farmacologia , Anidulafungina , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Caspofungina , Quitinases/deficiência , Quitinases/genética , Mapeamento Cromossômico , Proteínas Fúngicas/metabolismo , Deleção de Genes , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Humanos , Testes de Sensibilidade Microbiana , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
6.
FEMS Yeast Res ; 14(5): 708-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24702787

RESUMO

Candida albicans, a fungus that normally inhabits the digestive tract and other mucosal surfaces, can become a pathogen in immunocompromised individuals, causing severe or even fatal infection. Mechanisms by which C. albicans can evade commonly used antifungal agents are not fully understood. We are studying a model system involving growth of C. albicans on toxic sugar sorbose, which represses synthesis of cell wall glucan and, as a result, kills fungi in a manner similar to drugs from the echinocandins class. Adaptation to sorbose occurs predominantly due to reversible loss of one homolog of chromosome 5 (Ch5), which results in upregulation of the metabolic gene SOU1 (SOrbose Utilization) on Ch4. Here, we show that growth on sorbose due to Ch5 monosomy can involve a facultative trisomy of a hybrid Ch4/7 that serves to increase copy number of the SOU1 gene. This shows that control of expression of SOU1 can involve multiple mechanisms; in this case, negative regulation and increase in gene copy number operating simultaneously in cell.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Cromossomos Fúngicos , Monossomia , Sorbose/metabolismo , Sorbose/toxicidade , Adaptação Biológica , Candida albicans/genética , Regulação Fúngica da Expressão Gênica , Trissomia
7.
J Fungi (Basel) ; 10(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38535232

RESUMO

The opportunistic fungus Candida albicans is the leading cause of invasive candidiasis in immune-compromised individuals. Drugs from the echinocandin (ECN) class, including caspofungin, are used as a first line of therapy against invasive candidiasis. The only known mechanism of clinical resistance to ECNs is point mutations in the FKS1 gene, which encodes the drug target. However, many clinical isolates developed decreased ECN susceptibilities in the absence of resistance-associated FKS1 mutations. We have identified 15 C. albicans genes that contribute to decreased drug susceptibility. We explored the expression of these 15 genes in clinical isolates with different levels of ECN susceptibility. We found that these 15 genes are expressed in clinical isolates with or without FKS1 mutations, including those strains that are less susceptible to ECNs. In addition, FKS1 expression was increased in such less susceptible isolates compared to highly susceptible isolates. Similarities of gene expression patterns between isolates with decreased ECN susceptibilities in the absence of FKS1 mutations and clinically resistant isolates with mutations in FKS1 suggest that clinical isolates with decreased ECN susceptibilities may be a precursor to development of resistance.

8.
Antimicrob Agents Chemother ; 57(10): 5026-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23896475

RESUMO

Candida albicans is a prevailing fungal pathogen with a diploid genome that can adapt to environmental stresses by losing or gaining an entire chromosome or a large portion of a chromosome. We have previously found that the loss of one copy of chromosome 5 (Ch5) allows for adaptation to the toxic sugar l-sorbose. l-Sorbose is similar to caspofungin and other antifungals from the echinocandins class, in that it represses synthesis of cell wall glucan in fungi. Here, we extended the study of the phenotypes controlled by Ch5 copy number. We examined 57 strains, either disomic or monosomic for Ch5 and representing five different genetic backgrounds, and found that the monosomy of Ch5 causes elevated levels of chitin and repressed levels of 1,3-ß-glucan components of the cell wall, as well as diminished cellular ergosterol. Increased deposition of chitin in the cell wall could be explained, at least partially, by a 2-fold downregulation of CHT2 on the monosomic Ch5 that encodes chitinase and a 1.5-fold upregulation of CHS7 on Ch1 that encodes the protein required for wild-type chitin synthase III activity. Other important outcomes of Ch5 monosomy consist of susceptibility changes to agents representing four major classes of antifungals. Susceptibility to caspofungin increased or decreased and susceptibility to 5-fluorocytosine decreased, whereas susceptibility to fluconazole and amphotericin B increased. Our results suggest that Ch5 monosomy represents an unrecognized C. albicans regulatory strategy that impinges on multiple stress response pathways.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Cromossomos Fúngicos/genética , Anfotericina B/farmacologia , Caspofungina , Equinocandinas/farmacologia , Fluconazol/farmacologia , Flucitosina/farmacologia , Lipopeptídeos
10.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798197

RESUMO

Candida albicans is part of normal microbiota, however, can cause superficial and life threatening infection in immune-compromised individuals. Drugs from echinocandin (ECN) class that disrupt cell wall synthesis, are being used as a major treatment strategy against candidiasis. As the use of ECNs for the treatment of candidiasis is increasing, resistance against ECNs is also emerging. Previously, we reported involvement of 5 chromosome 2 (Ch2) genes in adaptation to ECN drugs. Here, we explored 22 candidate-genes on Ch5 that are consistently downregulated in independent mutants adapted to caspofungin (CAS), for their role in ECN adaptation. We also compared cell wall remodelling in CAS-adapted mutants and in 10 knockouts (KOs) from Ch5. Independent KO experiments as combined with broth microdilution assay, demonstrated that, as expected, 10 out of 22 Ch5 genes decrease ECN susceptibility by controlling the levels of three major components of the cell wall, glucan, mannan, and chitin. Some KOs decreased glucan or increased chitin or both. Similar cell wall remodelling, decreased glucan and increased chitin, was found in CAS-adapted mutants with no ploidy change. Some other KOs had no glucan change, but increased the level of either mannan or chitin. Our results identify the function of two uncharacterized genes, orf19.970 and orf19.4149.1, and expand the functions of DUS4, RPS25B, UAP1, URA7, RPO26, HAS1 , and CKS1 . The function of CHT2 , as negative regulator of ECN susceptibility, has been previously established. Importantly, half of the above genes are essential indicating that essential processes are involved in cell wall remodelling for adaptation to ECNs. Also important, orf19.970 and orf19.4149.1 have no human orthologues. Finally, our work shows that multiple mechanisms are used by C. albicans cells to remodel cell wall in order to adapt to CAS. This work continues to identify common pathways that are involved in drug adaptation, as well as new genes controlling ECN susceptibility and reveals new targets for development of novel antifungal drugs.

11.
Microorganisms ; 11(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37630430

RESUMO

Drugs from the echinocandin (ECN) class are now recommended 'front-line' treatments of infections caused by a prevailing fungal pathogen, C. albicans. However, the increased use of ECNs is associated with a rising resistance to ECNs. As the acquisition of ECN resistance in C. albicans is viewed as a multistep evolution, determining factors that are associated with the decreased ECN susceptibility is of importance. We have recently identified two cohorts of genes that are either up- or downregulated in concert in order to control remodeling of cell wall, an organelle targeted by ECNs, in laboratory mutants with decreased ECN susceptibility. Here, we profiled the global DNA sequence of four of these adapted mutants in search of DNA changes that are associated with decreased ECN susceptibility. We find a limited number of 112 unique mutations representing two alternative mutational pathways. Approximately half of the mutations occurred as hotspots. Approximately half of mutations and hotspots were shared by ECN-adapted mutants despite the mutants arising as independent events and differing in some of their phenotypes, as well as in condition of chromosome 5. A total of 88 mutations are associated with 43 open reading frames (ORFs) and occurred inside of an ORF or within 1 kb of an ORF, predominantly as single-nucleotide substitution. Mutations occurred more often in the 5'-UTR than in the 3'-UTR by a 1.67:1 ratio. A total of 16 mutations mapped to eight genomic features that were not ORFs: Tca4-4 retrotransposon; Tca2-7 retrotransposon; lambda-4a long terminal repeat; mu-Ra long terminal repeat; MRS-7b Major Repeat Sequence; MRS-R Major Repeat Sequence; RB2-5a repeat sequence; and tL (CAA) leucine tRNA. Finally, eight mutations are not associated with any ORF or other genomic feature. Repeated occurrence of single-nucleotide substitutions in non-related drug-adapted mutants strongly indicates that these DNA changes are accompanying drug adaptation and could possibly influence ECN susceptibility, thus serving as factors facilitating evolution of ECN drug resistance due to classical mutations in FKS1.

12.
Microbiol Spectr ; 11(6): e0329523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966256

RESUMO

IMPORTANCE: Candida infections are often fatal in immuno-compromised individuals, resulting in many thousands of deaths per year. Caspofungin has proven to be an excellent anti-Candida drug and is now the frontline treatment for infections. However, as expected, the number of resistant cases is increasing; therefore, new treatment modalities are needed. We are determining metabolic pathways leading to decreased drug susceptibility in order to identify mechanisms facilitating evolution of clinical resistance. This study expands the understanding of genes that modulate drug susceptibility and reveals new targets for the development of novel antifungal drugs.


Assuntos
Candida albicans , beta-Glucanas , Humanos , Caspofungina/farmacologia , Candida albicans/genética , Candida albicans/metabolismo , Equinocandinas/farmacologia , beta-Glucanas/metabolismo , Cromossomos Humanos Par 5/metabolismo , Epitopos , Antifúngicos/uso terapêutico , Parede Celular/metabolismo
13.
J Oral Microbiol ; 15(1): 2144047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36389056

RESUMO

Objective: To assess the interactions between Streptococcus mutans and Candida albicans during cariogenic biofilm formation. Methods: The S. mutans and C. albicans duo-species biofilms were formed in 1% sucrose to mimic the high caries risk challenges. The biofilm structure was assessed using two-photon laser confocal microscopy. The transcriptome of 48h-biofilms was assessed by RNA-Seq. The expression of S. mutans and C. albicans virulence genes was examined via real-time reverse transcription-polymerase chain reaction. Results: The morphogenesis of C. albicans-S. mutans duo-species biofilms was significantly altered when comparing to S. mutans or C. albicans single-species biofilm. Duo-species biofilms exhibited unique expression profile with a large number of differentially expressed genes (DEGs), including a higher expression of S. mutans atpD (acid-adaptive), C. albicans CHT2 (fungal cell wall chitin remodeling), and C. albicans SOD3 (cytotoxic oxygen radical destroying) (p < 0.05). KEGG pathway analyses further revealed that the majority of the up-regulated DEGs are related to microbial metabolism. Furthermore, the expressions of S. mutans and C. albicans key virulence genes (gtfB, gtfC, gtfD, ECE1, HWP1, ERG4, CHT2) were associated with sugar availability-related and time-related dynamics. Conclusion: Cross-kingdom interactions impact S. mutans-C. albicans biofilm formations and dynamic expressions of virulence genes.

14.
J Fungi (Basel) ; 9(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233291

RESUMO

The carriage of Candida albicans in children's oral cavities is associated with a higher risk for early childhood caries, so controlling this fungus in early life is essential for preventing caries. In a prospective cohort of 41 mothers and their children from 0 to 2 years of age, this study addressed four main objectives: (1) Evaluate in vitro the antifungal agent susceptibility of oral Candida isolates from the mother-child cohort; (2) compare Candida susceptibility between isolates from the mothers and children; (3) assess longitudinal changes in the susceptibility of the isolates collected between 0 and 2 years; and (4) detect mutations in C. albicans antifungal resistance genes. Susceptibility to antifungal medications was tested by in vitro broth microdilution and expressed as the minimal inhibitory concentration (MIC). C. albicans clinical isolates were sequenced by whole genome sequencing, and the genes related to antifungal resistance, ERG3, ERG11, CDR1, CDR2, MDR1, and FKS1, were assessed. Four Candida spp. (n = 126) were isolated: C. albicans, C. parapsilosis, C. dubliniensis, and C. lusitaniae. Caspofungin was the most active drug for oral Candida, followed by fluconazole and nystatin. Two missense mutations in the CDR2 gene were shared among C. albicans isolates resistant to nystatin. Most of the children's C. albicans isolates had MIC values similar to those from their mothers, and 70% remained stable on antifungal medications from 0 to 2 years. For caspofungin, 29% of the children's isolates showed an increase in MIC values from 0 to 2 years. Results of the longitudinal cohort indicated that clinically used oral nystatin was ineffective in reducing the carriage of C. albicans in children; novel antifungal regimens in infants are needed for better oral yeast control.

15.
Microorganisms ; 11(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36677315

RESUMO

Candida albicans is a prevalent fungal pathogen of humans. Understanding the development of decreased susceptibility to ECN drugs of this microbe is of substantial interest, as it is viewed as an intermediate step allowing the formation of FKS1 resistance mutations. We used six previously characterized mutants that decreased caspofungin susceptibility either by acquiring aneuploidy of chromosome 5 (Ch5) or by aneuploidy-independent mechanisms. When we exposed these caspofungin-adapted mutants to caspofungin again, we obtained 60 evolved mutants with further decreases in caspofungin susceptibility, as determined with CLSI method. We show that the initial adaptation to caspofungin is coupled with the adaptation to other ECNs, such as micafungin and anidulafungin, in mutants with no ploidy change, but not in aneuploid mutants, which become more susceptible to micafungin and anidulafungin. Furthermore, we find that the initial mechanism of caspofungin adaptation determines the pattern of further adaptation as parentals with no ploidy change further adapt to all ECNs by relatively small decreases in susceptibility, whereas aneuploid parentals adapt to all ECNs, primarily by large decrease in susceptibilities. Our data suggest that either distinct or common mechanisms can govern adaptation to different ECNs.

16.
Front Cell Infect Microbiol ; 12: 872012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392605

RESUMO

Dental caries, an ecological dysbiosis of oral microflora, initiates from the virulent biofilms formed on tooth surfaces where cariogenic microorganisms metabolize dietary carbohydrates, producing acid that demineralizes tooth enamel. Forming cariogenic biofilms, Streptococcus mutans and Candida albicans are well-recognized and emerging pathogens for dental caries. Recently, probiotics have demonstrated their potential in treating biofilm-related diseases, including caries. However, limited studies have assessed their effect on cariogenic bacteria-fungi cross-kingdom biofilm formation and their underlying interactions. Here, we assessed the effect of four probiotic Lactobacillus strains (Lactobacillus rhamnosus ATCC 2836, Lactobacillus plantarum ATCC 8014, Lactobacillus plantarum ATCC 14917, and Lactobacillus salivarius ATCC 11741) on S. mutans and C. albicans using a comprehensive multispecies biofilm model that mimicked high caries risk clinical conditions. Among the tested probiotic species, L. plantarum demonstrated superior inhibition on the growth of C. albicans and S. mutans, disruption of virulent biofilm formation with reduced bacteria and exopolysaccharide (EPS) components, and formation of virulent microcolonies structures. Transcriptome analysis (RNA sequencing) further revealed disruption of S. mutans and C. albicans cross-kingdom interactions with added L. plantarum. Genes of S. mutans and C. albicans involved in metabolic pathways (e.g., EPS formation, carbohydrate metabolism, glycan biosynthesis, and metabolism) were significantly downregulated. More significantly, genes related to C. albicans resistance to antifungal medication (ERG4), fungal cell wall chitin remodeling (CHT2), and resistance to oxidative stress (CAT1) were also significantly downregulated. In contrast, Lactobacillus genes plnD, plnG, and plnN that contribute to antimicrobial peptide plantaricin production were significantly upregulated. Our novel study findings support further assessment of the potential role of probiotic L. plantarum for cariogenic biofilm control.


Assuntos
Cárie Dentária , Lactobacillus plantarum , Biofilmes , Candida albicans/fisiologia , Streptococcus mutans/genética
17.
Biol Pharm Bull ; 34(5): 624-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21532148

RESUMO

Genome plasticity is a hallmark of Candida albicans and is believed to be an adaptation strategy. But the extent of such genomic variability is not well investigated. In this study, genetic contents of clinical C. albicans isolates were investigated at whole-genome level with array-based comparative genomic hybridization (array CGH) technology. It was revealed that C. albicans possessed variations of genetic contents, as well as aneuploidy. The variable genes were scattered across the chromosomes, as well clustered in particular regions, including sub-telomeric regions, retrotransposon-insertion sites and a variable region on chromosome 6.


Assuntos
Candida albicans/genética , Adaptação Fisiológica/genética , Sequência de Bases , Candida albicans/isolamento & purificação , Candida albicans/fisiologia , Cromossomos Fúngicos , Hibridização Genômica Comparativa , Primers do DNA , Dosagem de Genes , Genes Fúngicos , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Retroelementos
18.
Cell Surf ; 7: 100061, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34765834

RESUMO

The fungal cell wall serves as the interface between the organism and its environment. Complex carbohydrates are a major component of the Candida albicans cell wall, i.e., glucan, mannan and chitin. ß-Glucan is a pathogen associated molecular pattern (PAMP) composed of ß-(1 â†’ 3,1 â†’ 6)-linked glucopyranosyl repeat units. This PAMP plays a key role in fungal structural integrity and immune recognition. Glycogen is an α-(1 â†’ 4,1 â†’ 6)-linked glucan that is an intracellular energy storage carbohydrate. We observed that glycogen was co-extracted during the isolation of ß-glucan from C. albicans SC5314. We hypothesized that glucan and glycogen may form a macromolecular species that links intracellular glycogen with cell wall ß-(1 â†’ 3,1 â†’ 6)-glucan. To test this hypothesis, we examined glucan-glycogen extracts by multi-dimensional NMR to ascertain if glycogen and ß-glucan were interconnected. 1H NMR analyses confirmed the presence of glycogen and ß-glucan in the macromolecule. Diffusion Ordered SpectroscopY (DOSY) confirmed that the ß-glucan and glycogen co-diffuse, which indicates a linkage between the two polymers. We determined that the linkage is not via peptides and/or small proteins. Our data indicate that glycogen is covalently linked to ß-(1 â†’ 3,1 â†’ 6) glucan via the ß -(1 â†’ 6)-linked side chain. We also found that the glucan-glycogen complex was present in C. dublinensis, C. haemulonii and C. auris, but was not present in C. glabrata or C. albicans hyphal glucan. These data demonstrate that glucan and glycogen form a novel macromolecular complex in the cell wall of C. albicans and other Candida species. This new and unique structure expands our understanding of the cell wall in Candida species.

19.
Sci Rep ; 9(1): 10019, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31273219

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

20.
Yeast ; 25(6): 433-48, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18509849

RESUMO

Electrophoretic karyotyping of the Candida albicans revealed a different migration pattern of ChR in three different stocks of the sequencing strain SC5314. In one stock, the high instability of ChR size prevented the migration of ChR as a compact band; ChR appeared, instead, as a smear. In some stocks, ChR and/or Ch1 ploidy diminished, suggesting mixed populations of disomic and monosomic cells. Similarly, some stocks of widely used derivatives CAI4 and BWP17 contained smearing of ChR. In addition, the most manipulated strain in the lineage of SC5314, the last derivative, BWP17, acquired an increase in the size of Ch7b and revealed an unusual property. BWP17 did not tolerate a well-established procedure of telomere-mediated fragmentation of a chromosome; the remaining intact homologue always duplicated. We suggest that some stocks of SC5314 are unstable and that BWP17 may not be appropriate for general studies. Instead of BWP17 or CAI4, we recommend using for general research CAF4-2, which is a relatively stable Ura- derivative, and which has been successfully used for more than a decade in our laboratory.


Assuntos
Candida albicans/genética , Instabilidade Cromossômica , Cromossomos Fúngicos/genética , Animais , Humanos , Cariotipagem , Ploidias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA