Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Acta Biomater ; 83: 435-455, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408560

RESUMO

With the increasing demand for novel bone repair solutions that overcome the drawbacks of current grafting techniques, the design of artificial bone scaffolds is a central focus in bone regeneration research. Calcium phosphate scaffolds are interesting given their compositional similarity with bone mineral. The majority of studies focus on bone growth in the macropores (>100 µm) of implanted calcium phosphate scaffolds where bone structures such as osteons and trabeculae can form. However, a growing body of research shows that micropores (<50 µm) play an important role not only in improving bone growth in the macropores, but also in providing additional space for bone growth. Bone growth in the micropores of calcium phosphate scaffolds offers major mechanical advantages as it improves the mechanical properties of the otherwise brittle materials, further stabilizes the implant, improves load transfer, and generally enhances osteointegration. In this paper, we review evidence in the literature of bone growth into micropores, emphasizing on identification techniques and conditions under which bone components are observed in the micropores. We also review theories on mineralization and propose mechanisms, mediated by cells or not, by which mineralization may occur in the confined micropore space of calcium phosphate scaffolds. Understanding and validating these mechanisms will allow to better control and enhance mineralization in micropores to improve the design and efficiency of bone implants. STATEMENT OF SIGNIFICANCE: The design of synthetic bone scaffolds remains a major focus for engineering solutions to repair damaged and diseased bone. Most studies focus on the design of and growth in macropores (>100 µm), however research increasingly shows the importance of microporosity (<50 µm). Micropores provide an additional space for bone growth, which provides multiple mechanical advantages to the scaffold/bone composite. Here, we review evidence of bone growth into micropores in calcium phosphate scaffolds and conditions under which growth occurs in micropores, and we propose mechanisms that enable or facilitate growth in these pores. Understanding these mechanisms will allow researchers to exploit them and improve the design and efficiency of bone implants.


Assuntos
Materiais Biocompatíveis , Desenvolvimento Ósseo/efeitos dos fármacos , Regeneração Óssea , Substitutos Ósseos , Osso e Ossos , Fosfatos de Cálcio , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Substitutos Ósseos/química , Substitutos Ósseos/uso terapêutico , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/uso terapêutico , Humanos
2.
Biomaterials ; 180: 143-162, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036727

RESUMO

Bone fractures are the most common traumatic injuries in humans. The repair of bone fractures is a regenerative process that recapitulates many of the biological events of embryonic skeletal development. Most of the time it leads to successful healing and the recovery of the damaged bone. Unfortunately, about 5-10% of fractures will lead to delayed healing or non-union, more so in the case of co-morbidities such as diabetes. In this article, we review the different strategies to heal bone defects using synthetic bone graft substitutes, biologically active substances and stem cells. The majority of currently available reviews focus on strategies that are still at the early stages of development and use mostly in vitro experiments with cell lines or stem cells. Here, we focus on what is already implemented in the clinics, what is currently in clinical trials, and what has been tested in animal models. Treatment approaches can be classified in three major categories: i) synthetic bone graft substitutes (BGS) whose architecture and surface can be optimized; ii) BGS combined with bioactive molecules such as growth factors, peptides or small molecules targeting bone precursor cells, bone formation and metabolism; iii) cell-based strategies with progenitor cells combined or not with active molecules that can be injected or seeded on BGS for improved delivery. We review the major types of adult stromal cells (bone marrow, adipose and periosteum derived) that have been used and compare their properties. Finally, we discuss the remaining challenges that need to be addressed to significantly improve the healing of bone defects.


Assuntos
Regeneração Óssea/fisiologia , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Humanos , Células-Tronco/citologia , Células-Tronco/fisiologia
3.
ACS Biomater Sci Eng ; 3(11): 2768-2778, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33418701

RESUMO

Large and load-bearing bone defects are challenging to treat and cause pain and disfigurement. The design of efficacious bone scaffolds for the repair of such defects involves a range of length scales from the centimeter down to the micrometer-scale. Here, we assess the influence on bone regeneration of scaffold rod spacing (>300 µm) and microporosity (<50 µm), as well as the combination of different structures and materials in the same scaffold, i.e., at the millimeter scale. We use four single-domain scaffolds, microporous (MP) or nonmicroporous (NMP) and with either a "small" or "large" rod spacing. Multidomain scaffolds combine four regions corresponding to the macro- and microarchitectures of the single-domain scaffolds. The scaffolds are implanted in pig mandibles for 3 weeks and bone regeneration is assessed by measuring the average bone volume fraction, BVF̅, the bone distribution and the trabecular thickness from micro-CT data. For the single-domain scaffolds, BVF̅ was 45 ± 3% for MP-small, 39 ± 2% for MP-large, 25 ± 2% for NMP-small, and 25 ± 2% for NMP-large. MP scaffolds have significantly higher BVF̅ and a more uniform bone distribution compared to NMP, regardless of rod spacing. The average trabecular thickness is significantly larger in MP compared to NMP, and in "large" compared to "small" scaffolds. Microporosity affects trabecular thickness throughout the scaffold, while rod spacing affects it only at the scaffold periphery. In multidomain scaffolds, MP-large and NMP-large domains have similar BVF̅ as compared to their respective single-domain counterparts. These results suggest that combining different architectures into one scaffold conserves the properties of each domain. Hence, bone growth and morphology can be tailored by controlling scaffold architecture from the millimeter down to the micrometer level. This will allow the customization of scaffold designs for the treatment of large and load-bearing bone defects.

4.
Biofabrication ; 8(1): 015005, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26744897

RESUMO

Calcium phosphate (CaP) materials have been proven to be efficacious as bone scaffold materials, but are difficult to fabricate into complex architectures because of the high processing temperatures required. In contrast, polymeric materials are easily formed into scaffolds with near-net-shape forms of patient-specific defects and with domains of different materials; however, they have reduced load-bearing capacity compared to CaPs. To preserve the merits of CaP scaffolds and enable advanced scaffold manufacturing, this manuscript describes an additive manufacturing process that is coupled with a mold support for overhanging features; we demonstrate that this process enables the fabrication of CaP scaffolds that have both complex, near-net-shape contours and distinct domains with different microstructures. First, we use a set of canonical structures to study the manufacture of complex contours and distinct regions of different material domains within a mold. We then apply these capabilities to the fabrication of a scaffold that is designed for a 5 cm orbital socket defect. This scaffold has complex external contours, interconnected porosity on the order of 300 µm throughout, and two distinct domains of different material microstructures.


Assuntos
Substitutos Ósseos/síntese química , Fosfatos de Cálcio/química , Fraturas Orbitárias/terapia , Impressão Tridimensional , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Fraturas Orbitárias/patologia , Resultado do Tratamento
5.
Acta Biomater ; 44: 144-54, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27544807

RESUMO

UNLABELLED: The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF‾, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF‾, of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. STATEMENT OF SIGNIFICANCE: The increasing demand for bone repair calls for more efficacious bone scaffolds and calcium phosphate-based materials are considered suitable for this application. Macropores (>100µm) are necessary for bone ingrowth and vascularization. However, studies have shown that microporosity (<20µm) also enhances growth, but there is no consensus on the controlling mechanisms. In previous in vitro work, we suggested that micropore-induced capillarity had the potential to enhance bone growth in vivo. This work illustrates the positive effects of capillarity on bone regeneration in vivo; it demonstrates that micropore-induced capillarity significantly enhances the bone distribution in the scaffold. The results will impact the design of scaffolds to better exploit capillarity and improve treatments for large and load-bearing bone defects.


Assuntos
Osso e Ossos/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Ação Capilar , Alicerces Teciduais/química , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/irrigação sanguínea , Osso e Ossos/diagnóstico por imagem , Tamanho do Órgão , Porosidade , Sus scrofa , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA