Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38629606

RESUMO

Flow-enhanced nucleation (FEN) of n-pentacontahectane (C150) under biaxial extensional flows of varying strain rate ratios is studied using nonequilibrium molecular dynamics simulation. The nucleation rates thus calculated are used to test previously published FEN models based on invariants of the conformation tensor of Kuhn segments and the extra stress tensor. Models based on the conformation tensor provide a more accurate description of FEN observed in biaxial flow simulations than those based on the extra stress tensor. In addition, the formation of nematic domains previously reported to be stabilized by shear or extensional flow is absent in equibiaxial flows. However, such domains do form in non-equibiaxial flows, and nucleation occurs in these domains preferentially. The shape and orientation of nuclei formed under biaxial flows of various strengths and strain rate ratios are also reported.

2.
Langmuir ; 39(32): 11468-11480, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37540768

RESUMO

The removal of emulsified oils from water has always been a challenge due to the kinetic stability resulting from the small droplet size and the presence of stabilizing agents. Membrane technology can treat such mixtures, but fouling of the membrane leads to dramatic reductions in the process capacity. Liquid-infused membranes (LIMs) can potentially resolve the issue of fouling. However, their low permeate flux compared with conventional hydrophilic membranes remains a limitation. To gain insight into the mechanism of transport, we use 3D images acquired by confocal laser scanning microscopy (CLSM) to reconstruct the sequence of events occurring during startup and operation of the LIM for removal of dispersed oil from oil-in-water emulsions. We find evidence for coalescence of oil droplets on the surface of and formation of oil channels within the LIM. Using image analysis, we find that the rate at which oil channels are formed within the membrane and the number of channels ultimately govern the permeate flux of oil through the LIMs. Oil concentration in the feed affects the rate of coalescence of oil on the surface of the LIM, which, in turn, affects the channel formation dynamics. The channel formation dynamics also depend on the viscosity of the infused liquid and the operating pressure. A higher affinity to the pore wall for infused liquid than permeating liquid is essential to antifouling behavior. Overall, this work offers insight into the selective permeation of a dispersed liquid phase through a LIM.

3.
Langmuir ; 38(7): 2301-2313, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35129364

RESUMO

From an environmental perspective, microfiltration membranes are attractive for the separation of emulsified oils from contaminated water. However, fouling of the membrane is a major drawback of the technology. "Liquid-infused membranes" (LIMs) have the potential to eliminate membrane fouling. Here, we demonstrate the practical application of LIMs for the separation of oil from a stable oil-in-water emulsion and characterize their resistance to fouling. The base membrane is an electrospun nonwoven fibrous layer of the fluorinated copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP). The surface energy of the PVDF-co-HFP fibers was lowered by the covalent attachment of a fluorinated silane (PFOCTS), and then, the membrane was infused with a perfluoropolyether. The membrane was then challenged with model emulsions of dodecane in water in a cross-flow configuration. This PFOCTS-modified LIM showed better infused liquid stability, permeation selectivity, higher permeate flux than the unmodified LIM, and better anti-fouling properties than the bare membrane without infused liquid. We also examine the mechanism for transport of the dispersed oil phase through the liquid-infused membrane. We find a linear relationship between the dodecane flux and dodecane concentration in the feed and a higher dodecane flux through the PFOCTS-modified membrane than the unmodified one, which suggests that the capture of dodecane droplets from the feed plays an important role in determining the overall rate of permeation. Other factors such as lower viscosity of the infused liquid, larger pore size, and higher operating pressure also improved the permeate flux through the LIMs. Overall, this work provides some guidelines on the design of composite membranes comprising infused liquids and the choice of operating conditions for the filtration process.

4.
Small ; 17(49): e2103695, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34623728

RESUMO

Blocking liquid penetration in porous materials is a key function for several applications including chemical protective clothing (CPC), wound healing, and hygiene products. Enormous efforts are made to prevent liquid penetration through porous media by the modification of materials. CPC is used as an example to demonstrate the effect of the synergistic effect on liquid penetration. A common strategy to achieve liquid protection is the use of liquid-repellent surfaces with the aid of a liquid absorption liner layer. However, this strategy demonstrates limited success for low surface energy liquids. Herein, a novel approach is reported to prevent the permeation of liquid across porous materials by a synergistic effect. Both fabrics are individually susceptible to be wetted by low surface tension liquids. However, when they are assembled, they can prevent low surface tension liquids from penetrating because of the wettability gap between the two fabrics. The fabric assembly demonstrates an increase in the liquid prevention capacity by 70-1000 times compared with a commercial CPC material. This novel synergistic effect may offer a breakthrough in the development of various applications including protective clothing baby nappies, hygiene products, food preparation, soil water retention, and sporting/camping/ski equipment and clothing.


Assuntos
Roupa de Proteção , Têxteis , Porosidade , Tensão Superficial , Molhabilidade
5.
J Rheol (N Y N Y) ; 64(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34131354

RESUMO

Polymer crystallization occurs in many plastic manufacturing processes, from injection molding to film blowing. Linear low-density polyethylene (LLDPE) is one of the most commonly processed polymers, wherein the type and extent of short-chain branching (SCB) may be varied to influence crystallization. In this work, we report simultaneous measurements of the rheology and Raman spectra, using a Rheo-Raman microscope, for two industrial-grade LLDPEs undergoing crystallization. These polymers are characterized by broad polydispersity, SCB and the presence of polymer chain entanglements. The rheological behavior of these entangled LLDPE melts is modeled as a function of crystallinity using a slip-link model. The partially crystallized melt is represented by a blend of linear chains with either free or crosslinked ends, wherein the crosslinks represent attachment to growing crystallites, and a modulus shift factor that increases with degree of crystallinity. In contrast to our previous application of the slip-link model to isotactic polypropylene (iPP), in which the introduction of only bridging segments with crosslinks at both ends was sufficient to describe the available data, for these LLDPEs we find it necessary to introduce dangling segments, with crosslinks at only one end. The model captures quantitatively the evolution of viscosity and elasticity with crystallization over the whole range of frequencies in the linear regime for two LLDPE grades.

6.
J Chem Phys ; 148(14): 144709, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655320

RESUMO

A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ∼15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.

7.
Small ; 12(7): 911-20, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26728087

RESUMO

A novel catalyst functionalization method, based on protein-encapsulated metallic nanoparticles (NPs) and their self-assembly on polystyrene (PS) colloid templates, is used to form catalyst-loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high-temperature heat-treatment during synthesis, which is attributed to the discrete self-assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP-loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (R(air)/R(gas)) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8- and 7.1-fold improvements compared to that of dense WO3 NFs (R(air)/R(gas) = 6.1). Moreover, Pt NP-loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well-dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors.


Assuntos
Apoferritinas/química , Biomarcadores/análise , Coloides/química , Nanofibras/química , Óxidos/química , Poliestirenos/química , Tungstênio/química , Animais , Catálise , Cavalos , Sulfeto de Hidrogênio/análise , Nanofibras/ultraestrutura
8.
Anal Bioanal Chem ; 408(5): 1307-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26650731

RESUMO

Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.


Assuntos
Bioensaio , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Carbono/química , Técnicas de Química Analítica/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Animais , Biomarcadores/análise , Fibra de Carbono , Eletrodos , Humanos
9.
J Chem Phys ; 144(13): 134105, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059560

RESUMO

We introduce a method for the analysis of nucleation using mean first-passage time (MFPT) statistics obtained by molecular dynamics simulation. The method is based on the Becker-Döring model for the dynamics of a nucleation-mediated phase change and rigorously accounts for the system size dependence of first-passage statistics. It is thus suitable for the analysis of systems in which the separation between time scales for nucleation and growth is small, due to either a small free energy barrier or a large system size. The method is made computationally practical by an approximation of the first-passage time distribution based on its cumulant expansion. Using this approximation, the MFPT of the model can be fit to data from molecular dynamics simulation in order to estimate valuable kinetic parameters, including the free energy barrier, critical nucleus size, and monomer attachment pre-factor, as well as the steady-state rates of nucleation and growth. The method is demonstrated using a case study on nucleation of n-eicosane crystals from the melt. For this system, we found that the observed distribution of first-passage times do not follow an exponential distribution at short times, rendering it incompatible with the assumptions made by some other methods. Using our method, the observed distribution of first-passage times was accurately described, and reasonable estimates for the kinetic parameters and steady-state rates of nucleation and growth were obtained.

10.
J Chem Phys ; 145(24): 244903, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28049327

RESUMO

Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of large articulated clusters under strong flow fields, and compact well-ordered clusters under weak flow fields.

11.
J Am Chem Soc ; 137(3): 1348-55, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25563424

RESUMO

We report a method to control reaction kinetics using electrochemically responsive heterogeneous catalysis (ERHC). An ERHC system should possess a hybrid structure composed of an electron-conducting porous framework coated with redox-switchable catalysts. In contrast to other types of responsive catalysis, ERHC combines all the following desired characteristics for a catalysis control strategy: continuous variation of reaction rates as a function of the magnitude of external stimulus, easy integration into fixed-bed flow reactors, and precise spatial and temporal control of the catalyst activity. Herein we first demonstrate a facile approach to fabricating a model ERHC system that consists of carbon microfibers with conformal redox polymer coating. Second, using a Michael reaction whose kinetics depends on the redox state of the redox polymer catalyst, we show that use of different electrochemical potentials permits continuous adjustment of the reaction rates. The dependence of the reaction rate on the electrochemical potential generally agrees with the Nernstian prediction, with minor discrepancies due to the multilayer nature of the polymer film. Additionally, we show that the ERHC system can be employed to manipulate the shape of the reactant concentration-time profile in a batch reactor through applying customized potential-time programs. Furthermore, we perform COMSOL simulation for an ERHC-integrated flow reactor, demonstrating highly flexible manipulation of reactant concentrations as a function of both location and time.

12.
J Phys Condens Matter ; 36(34)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38729203

RESUMO

The model of an ideal polymer chain in a harmonic applied field has broad applicability in situations involving polymer confinement and deformation due to applied stress. In this work we (1) formulate a general analytical model for a continuous Gaussian chain under a harmonic applied potential and (2) evaluate the statistical mechanics of this model given the potential, obtaining partition functions and moment generating functions (MGFs) that describe the chain configurations. Closed-form expressions for the squared radius of gyration, potential energy, partition function, and MGF for the center of mass are obtained for a general and multidimensional harmonic field. The expressions are compared with results of Monte Carlo simulations of a discrete Gaussian chain as well as results for related systems obtained from the literature. The theory derived here is used to test the applicability of the current model assumptions to relations from the literature describing polymer confinement and deformation in experiment, theory, and simulations.

13.
Langmuir ; 29(31): 9626-34, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23800146

RESUMO

We report noncovalent dispersion of carbon nanotubes (CNTs) in organic liquids with extremely high loading (∼2 mg mL(-1)) using polyvinylferrocene (PVF). In contrast to common dispersants, PVF does not contain any conjugated structures or ionic moieties. PVF is also shown to be effective in controlling nanotube dispersion and reprecipitation because it exhibits redox-switchable affinity for solvents, while maintaining stable physical attachment to CNTs during redox transformation. This switchability provides a novel approach to creating CNT-functionalized surfaces. The material systems described here offer new opportunities for applications of CNTs in nonaqueous media, such as nanotube-polymer composites and organic liquid-based optical limiters, and expand the means of tailoring nanotube dispersion behavior via external stimuli, with potential applications in switching devices. The PVF/CNT hybrid system with enhanced redox response of ferrocene may also find applications in high-performance biosensors and pseudocapacitors.


Assuntos
Compostos Ferrosos/química , Nanotubos de Carbono/química , Compostos Orgânicos/química , Polivinil/química , Oxirredução , Tamanho da Partícula , Solventes/química , Propriedades de Superfície
14.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959945

RESUMO

Semicrystalline polymers are lightweight, multiphase materials that exhibit attractive shock dissipation characteristics and have potential applications as protective armor for people and equipment. For shocks of 10 GPa or less, we analyzed various mechanisms for the storage and dissipation of shock wave energy in a realistic, united atom (UA) model of semicrystalline polyethylene. Systems characterized by different levels of crystallinity were simulated using equilibrium molecular dynamics with a Hugoniostat to ensure that the resulting states conform to the Rankine-Hugoniot conditions. To determine the role of structural rearrangements, order parameters and configuration time series were collected during the course of the shock simulations. We conclude that the major mechanisms responsible for the storage and dissipation of shock energy in semicrystalline polyethylene are those associated with plastic deformation and melting of the crystalline domain. For this UA model, plastic deformation occurs primarily through fine crystallographic slip and the formation of kink bands, whose long period decreases with increasing shock pressure.

15.
Phys Rev Lett ; 109(18): 184501, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215283

RESUMO

A method is presented for determining the dynamic contact angle at the three-phase contact between a solid, a liquid, and a vapor under an applied force, using molecular simulation. The method is demonstrated using a Lennard-Jones fluid in contact with a cylindrical shell of the fcc Lennard-Jones solid. Advancing and receding contact angles and the contact angle hysteresis are reported for the first time by this approach. The increase in force required to wet fully an array of solid cylinders (robustness) with decreasing separation distance between cylinders is evaluated. The dynamic contact angle is characterized by partial slipping of the three phase contact line when a force is applied.

16.
Langmuir ; 28(25): 9714-21, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22621200

RESUMO

Many materials have been fabricated using electrospinning, including pharmaceutical formulations, superhydrophobic surfaces, catalysis supports, filters, and tissue engineering scaffolds. Often these materials can benefit from microparticles included within the electrospun fibers. In this work, we evaluate a high-throughput free surface electrospinning technique to prepare fibers containing microparticles. We investigate the spinnability of polyvinylpyrrolidone (PVP) solutions containing suspended polystyrene (PS) beads of 1, 3, 5, and 10 µm diameter in order to better understand free surface electrospinning of particle suspensions. PS bead suspensions with both 55 kDa PVP and 1.3 MDa PVP were spinnable at 1:10, 1:5, and 1:2 PS:PVP mass loadings for all particle sizes studied. The final average fiber diameters ranged from 0.47 to 1.2 µm and were independent of the particle size and particle loading, indicating that the fiber diameter can be smaller than the particles entrained and can furthermore be adjusted based on solution properties and electrospinning parameters, as is the case for electrospinning of solutions without particles.


Assuntos
Microtecnologia/métodos , Etanol/química , Poliestirenos/química , Povidona/química , Propriedades de Superfície
17.
Lasers Surg Med ; 44(8): 645-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22911554

RESUMO

BACKGROUND AND OBJECTIVE: Suture repair of Achilles tendon rupture can cause infection, inflammation and scarring, while prolonged immobilization promotes adhesions to surrounding tissues and joint stiffness. Early mobilization can reduce complications provided the repair is strong enough to resist re-rupture. We have developed a biocompatible, photoactivated tendon wrap from electrospun silk (ES) to provide additional strength to the repair that could permit early mobilization, and act as a barrier to adhesion formation. STUDY DESIGN/MATERIAL AND METHODS: ES nanofiber mats were prepared by electrospinning. New Zealand white rabbits underwent surgical transection of the Achilles tendon and repair by: (a) SR: standard Kessler suture + epitendinous suture (5-0 vicryl). (b) ES/PTB: a single stay suture and a section of ES mat, stained with 0.1% Rose Bengal (RB), wrapped around the tendon and bonded with 532 nm light (0.3 W/cm(2) , 125 J/cm(2) ). (c) SR + ES/PTB: a combination of (a) and (b). Gross appearance, extent of adhesion formation and biomechanical properties of the repaired tendon were evaluated at Days 7, 14, or 28 post-operatively (n = 8 per group at each time point). RESULTS: Ultimate stress (US) and Young's modulus (E) in the SR group were not significantly different from the ES/PTB group at Days 7 (US, P = 0.85; E, P = 1), 14 (US, P = 0.054; E, P = 1), and 28 (US, P = 0.198; E, P = 0.12) post-operatively. Adhesions were considerably greater in the SR group compared to the ES/PTB group at Days 7 (P = 0.002), 14 (P < 0.0001), and 28 (P < 0.0001). The combination approach of SR + ES/PTB gave the best outcomes in terms of E at 7 (P < 0.016) and 14 days (P < 0.016) and reduced adhesions compared to SR at 7 (P < 0.0001) and 14 days (P < 0.0001), the latter suggesting a barrier function for the photobonded ES wrap. CONCLUSION: Photochemical sealing of a ES mat around the tendon repair site provides considerable benefit in Achilles tendon repair. Lasers Surg. Med. 44: 645-652, 2012. © 2012 Wiley Periodicals, Inc.


Assuntos
Tendão do Calcâneo/cirurgia , Lasers , Nanofibras , Processos Fotoquímicos , Seda , Tendão do Calcâneo/lesões , Tendão do Calcâneo/patologia , Animais , Materiais Biocompatíveis , Corantes Fluorescentes , Teste de Materiais , Microscopia Eletrônica de Varredura , Modelos Animais , Coelhos , Rosa Bengala , Suturas , Resistência à Tração , Aderências Teciduais/patologia
18.
ACS Appl Mater Interfaces ; 14(6): 8373-8383, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104099

RESUMO

To improve the flexibility of the fabric stacks used in protective clothing, shear-thickening fluids (STFs) have previously been incorporated into woven microfiber fabrics to enhance their impact resistance. However, the microfiber-STF composites can exhibit loss of the STF from the composite over time due to the large interstitial spaces between fibers, resulting in limited long-term shape stability. In this study, nonwoven mats of electrospun ultrafine fibers (UFFs) were used in place of woven microfiber fabrics to improve the STF retention within the fiber-STF composites by taking advantage of high specific surface area, small pore size, and large capillary force. The UFF-STF composite, comprising an electrospun polyamide (PA 6,6) UFF mat and a fumed silica (FS) STF, exhibited excellent shape stability with high breakthrough pressure and improved STF retention compared to composites based on conventional microfiber fabrics. The mechanical response of the composite is shown to depend on the rate of deformation. At strain rates lower than the shear-thickening threshold of the STF, the introduction of STF resulted in no stiffening or strengthening of fiber mats, allowing the composite to remain flexible. At high deformation rates above the onset of shear thickening, the incorporation of STF improved both the elasticity and the viscosity of the material. In addition, the shape stability and the mechanical properties of the composite were influenced by the STF viscosity and the UFF morphology. STF with high particle loading and UFF with small fiber diameter resulted in a more pronounced enhancement to membrane performance.

19.
J Phys Chem B ; 126(34): 6529-6535, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998645

RESUMO

A computational and experimental framework for quantifying flow-enhanced nucleation (FEN) in polymers is presented and demonstrated for an industrial-grade linear low-density polyethylene (LLDPE). Experimentally, kinetic measurements of isothermal crystallization were performed by using fast-scanning calorimetry (FSC) for melts that were presheared at various strain rates. The effect of shear on the average conformation tensor of the melt was modeled with the discrete slip-link model (DSM). The conformation tensor was then related to the acceleration in nucleation kinetics by using an expression previously validated with nonequilibrium molecular dynamics (NEMD). The expression is based on the nematic order tensor of Kuhn segments, which can be obtained from the conformation tensor of entanglement strands. The single adjustable parameter of the model was determined by fitting to the experimental FSC data. This expression accurately describes FEN for the LLDPE, representing a significant advancement toward the development of a fully integrated processing model for crystallizable polymers.


Assuntos
Polietileno , Polímeros , Cristalização , Cinética , Conformação Molecular , Polietileno/química , Polímeros/química
20.
Langmuir ; 27(11): 6683-8, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21548568

RESUMO

Carbamazepine (CBZ) microparticles of different sizes and shapes, including spheres, q-tips, elongated spheres, and tear-shaped particles, were formed by electrospraying solutions of different CBZ concentrations. The particle characteristics were determined by the interplay between jet formation, droplet breakup, solvent evaporation, and eventual particle solidification. The average particle size increased with increasing CBZ concentration, with particles of different shapes being observed for different CBZ concentrations. The cascade of sizes and shapes observed was interpreted in terms of Rayleigh instability theory as applied to charged jets and droplets, with the final sizes depending upon the time needed to evaporate the solvent sufficiently for CBZ to solidify; the lower the initial concentration of CBZ, the smaller the final droplets/particles that are formed.


Assuntos
Carbamazepina/química , Microtecnologia/métodos , Nanopartículas/química , Nanotecnologia/métodos , Tamanho da Partícula , Transição de Fase , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA