RESUMO
The Department of Energy's (DOE) Savannah River Site (SRS) faces a legacy of radionuclide and metal contamination from industrial processes that occurred throughout the site. Northern river otters (Lontra canadensis) are appropriate receptors for studying the effects of long-term, low-level contamination because they are long-lived, higher trophic level organisms susceptible to accumulating high levels of pollutants. The purpose of this study was to use latrine surveys to examine patterns of wetland latrine usage; explicitly model northern river otter resource selection on the landscape level; and utilize the model results within an ecological risk assessment (ERA) framework to assess potential effects of metals and radiocesium (137Cs) on the population for the SRS as a case study. River drainages and associated wetlands were surveyed for latrine sites and scats were collected and analyzed for 137Cs activity to validate model results. The spatially explicit resource model predicted otter drainage reach use and was used in an ERA to develop exposure models for nine heavy metals as well as 137Cs on the SRS population of river otters. The evaluation predicted that the only contaminant occurring at high enough levels to cause population effects was mercury and that the observed concentrations were probably not high enough to cause significant impairment. However, multiple metals were above action level thresholds. The field validation process showed an unexpected preference for one man-made treatment wetland that was heavily contaminated, showing that the ERA process is complex and must be approached using multiple scales.
Assuntos
Radioisótopos de Césio/análise , Monitoramento Ambiental , Metais Pesados/análise , Lontras/fisiologia , Poluentes Químicos da Água/análise , Animais , Ecologia , Mercúrio/análise , Medição de Risco , RiosRESUMO
Since the 1950s, select military and political leaders have had the capacity to kill all or nearly all human life on Earth. The number of people entrusted with this power grows each year through proliferation and the rise of new political leaders. If humans continue to maintain and develop nuclear weapons, it is highly probable that a nuclear exchange will occur again at some point in the future. This nuclear exchange may or may not annihilate the human species, but it will cause catastrophic effects on the biosphere. The international community has attempted to resolve this existential problem via treaties that control and potentially eliminate nuclear weapons, however, these treaties target only nuclear weapons, leaving the use of war as a normalized means for settling conflict. As long as war exists as a probable future, nations will be under pressure to develop more powerful weapons. Thus, we argue that the elimination of nuclear weapons alone is not a stable, long-term strategy. A far more secure strategy would be the elimination of war as a means of settling international disputes. Therefore, those concerned about environmental sustainability or the survival of the biosphere should work to abolish war.
Assuntos
Política Ambiental , Cooperação Internacional , Guerra , Objetivos , HumanosRESUMO
For species at risk of extinction, any parasites they have would be expected to face a similar fate. In such cases, time is running out for efforts to identify and study their parasitic fauna before they are gone. We surveyed the hemoparasite fauna of 50 black-chested, spiny-tailed iguanas (Ctenosaura melanosterna), a critically-endangered species, on an island off the coast of Honduras. Blood samples from captured animals were tested for hemoparasites by thin blood smear and molecular analyses. Based on microscopy, two parasites were identified, a Plasmodium sp. in 14% of iguanas and a Hepatozoon sp. in 32%. For both parasites, parasitemia levels were <0.1%. Prevalence and parasitemias of Hepatozoon declined with increasing host size, a pattern differing from most prior studies of saurian reptiles. From a subset of iguanas with microscopy-confirmed Plasmodium infections, sequence analysis of 454 bp of the cytochrome b gene indicated that the Plasmodium species was distinct from known Plasmodium and was most closely related to P. chiricahuae (96.5% similarity) followed by P. mexicanum (95.8% similarity). Efforts to amplify the Hepatozoon parasite using PCR were not successful. Additional surveys and studies of this host-parasite system would be valuable, both to science and to the management of this endangered animal.