Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(35): E4901-10, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283345

RESUMO

Precision medicine, taking account of human individuality in genes, environment, and lifestyle for early disease diagnosis and individualized therapy, has shown great promise to transform medical care. Nontargeted metabolomics, with the ability to detect broad classes of biochemicals, can provide a comprehensive functional phenotype integrating clinical phenotypes with genetic and nongenetic factors. To test the application of metabolomics in individual diagnosis, we conducted a metabolomics analysis on plasma samples collected from 80 volunteers of normal health with complete medical records and three-generation pedigrees. Using a broad-spectrum metabolomics platform consisting of liquid chromatography and GC coupled with MS, we profiled nearly 600 metabolites covering 72 biochemical pathways in all major branches of biosynthesis, catabolism, gut microbiome activities, and xenobiotics. Statistical analysis revealed a considerable range of variation and potential metabolic abnormalities across the individuals in this cohort. Examination of the convergence of metabolomics profiles with whole-exon sequences (WESs) provided an effective approach to assess and interpret clinical significance of genetic mutations, as shown in a number of cases, including fructose intolerance, xanthinuria, and carnitine deficiency. Metabolic abnormalities consistent with early indications of diabetes, liver dysfunction, and disruption of gut microbiome homeostasis were identified in several volunteers. Additionally, diverse metabolic responses to medications among the volunteers may assist to identify therapeutic effects and sensitivity to toxicity. The results of this study demonstrate that metabolomics could be an effective approach to complement next generation sequencing (NGS) for disease risk analysis, disease monitoring, and drug management in our goal toward precision care.


Assuntos
Voluntários Saudáveis , Metaboloma , Plasma , Medicina de Precisão , Cromatografia Líquida , Estudos de Coortes , Cromatografia Gasosa-Espectrometria de Massas , Humanos
2.
Plant J ; 87(5): 442-54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27155400

RESUMO

The plant vascular system, and specifically the phloem, plays a pivotal role in allocation of fixed carbon to developing sink organs. Although the processes involved in loading and unloading of sugars and amino acids are well characterized, little information is available regarding the nature of other metabolites in the sieve tube system (STS) at specific sites along the pathway. Here, we elucidate spatial features of metabolite composition mapped with phloem enzymes along the cucurbit STS. Phloem sap (PS) was collected from the loading (source), unloading (apical sink region) and shoot-root junction regions of cucumber, watermelon and pumpkin. Our PS analyses revealed significant differences in the metabolic and proteomic profiles both along the source-sink pathway and between the STSs of these three cucurbits. In addition, metabolite profiles established for PS and vascular tissue indicated the presence of distinct compositions, consistent with the operation of the STS as a unique symplasmic domain. In this regard, at various locations along the STS we could map metabolites and their related enzymes to specific metabolic pathways. These findings are discussed with regard to the function of the STS as a unique and highly complex metabolic space within the plant vascular system.


Assuntos
Cucumis/metabolismo , Metabolômica/métodos , Proteínas de Plantas/metabolismo , Proteômica/métodos , Cucumis sativus/metabolismo , Floema/metabolismo
3.
J Inherit Metab Dis ; 38(6): 1029-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25875217

RESUMO

Global metabolic profiling currently achievable by untargeted mass spectrometry-based metabolomic platforms has great potential to advance our understanding of human disease states, including potential utility in the detection of novel and known inborn errors of metabolism (IEMs). There are few studies of the technical reproducibility, data analysis methods, and overall diagnostic capabilities when this technology is applied to clinical specimens for the diagnosis of IEMs. We explored the clinical utility of a metabolomic workflow capable of routinely generating semi-quantitative z-score values for ~900 unique compounds, including ~500 named human analytes, in a single analysis of human plasma. We tested the technical reproducibility of this platform and applied it to the retrospective diagnosis of 190 individual plasma samples, 120 of which were collected from patients with a confirmed IEM. Our results demonstrate high intra-assay precision and linear detection for the majority compounds tested. Individual metabolomic profiles provided excellent sensitivity and specificity for the detection of a wide range of metabolic disorders and identified novel biomarkers for some diseases. With this platform, it is possible to use one test to screen for dozens of IEMs that might otherwise require ordering multiple unique biochemical tests. However, this test may yield false negative results for certain disorders that would be detected by a more well-established quantitative test and in its current state should be considered a supplementary test. Our findings describe a novel approach to metabolomic analysis of clinical specimens and demonstrate the clinical utility of this technology for prospective screening of IEMs.


Assuntos
Biomarcadores/análise , Erros Inatos do Metabolismo/diagnóstico , Metabolômica/métodos , Triagem Neonatal/métodos , Humanos , Recém-Nascido , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
4.
Plant Cell ; 23(4): 1231-48, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21467579

RESUMO

Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.


Assuntos
Adaptação Fisiológica , Dessecação , Metabolômica/métodos , Poaceae/metabolismo , Alantoína/metabolismo , Asparagina/metabolismo , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Glutationa/biossíntese , Glicólise , Metaboloma , Nitrogênio/metabolismo , Fenótipo , Rafinose/metabolismo , Tocoferóis/metabolismo , Água
5.
Plant J ; 72(6): 983-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061970

RESUMO

Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.


Assuntos
Metabolômica , Selaginellaceae/metabolismo , Biomarcadores/metabolismo , Vias Biossintéticas , Dessecação , Nitrogênio/metabolismo , Fenótipo , Especificidade da Espécie , Estresse Fisiológico , Espectrometria de Massas em Tandem , Água/metabolismo
6.
Toxicol Appl Pharmacol ; 268(1): 79-89, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23360887

RESUMO

Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo/fisiologia , Toxinas Biológicas/toxicidade , Animais , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/urina , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Hepatócitos/metabolismo , Masculino , Metabolômica/métodos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Toxinas Biológicas/administração & dosagem
7.
Behav Sci Law ; 31(2): 256-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23606362

RESUMO

The current study examined the ability of the Structured Assessment of Violence Risk for Youth (SAVRY), a standardized risk assessment instrument, to predict probation outcomes among a sample of 158 adjudicated juvenile offenders placed on probation. Traditionally, the SAVRY has been used to measure violence risk among adolescents after release from custody. More recently, a delinquency risk measure based on SAVRY responses was developed, which could be useful for other types of outcome. This study examined the predictive validity of both summary risk ratings (SRR) for probation outcomes, including the reason for terminating probation and length of time on probation. A number of bivariate analyses and Cox regression models provided preliminary support for the ability of the nonviolent delinquency SRR, and modest support for the violence SRR, to predict probation outcomes. The implications for use of the SAVRY SRRs during juvenile justice system decision-making and recommendations for future research are discussed.


Assuntos
Criminosos/psicologia , Delinquência Juvenil/psicologia , Violência/psicologia , Adolescente , Criança , Feminino , Humanos , Aplicação da Lei , Masculino , Recidiva , Risco , Medição de Risco , Segurança
8.
Nat Genet ; 30(3): 311-4, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11836502

RESUMO

Evolution is based on genetic variability and subsequent phenotypic selection. Mechanisms that modulate the rate of mutation according to environmental cues, and thus control the balance between genetic stability and flexibility, might provide a distinct evolutionary advantage. Stress-induced mutations stimulated by unfavorable environments, and possible mechanisms for their induction, have been described for several organisms, but research in this area has mainly focused on microorganisms. We have analyzed the influence of adverse environmental conditions on the genetic stability of the higher plant Arabidopsis thaliana. Here we show that a biotic stress factor-attack by the oomycete pathogen Peronospora parasitica-can stimulate somatic recombination in Arabidopsis. The same effect was observed when plant pathogen-defense mechanisms were activated by the chemicals 2,6-dichloroisonicotinic acid (INA) or benzothiadiazole (BTH), or by a mutation (cim3). Together with previous studies of recombination induced by abiotic factors, these findings suggest that increased somatic recombination is a general stress response in plants. The increased genetic flexibility might facilitate evolutionary adaptation of plant populations to stressful environments.


Assuntos
Arabidopsis/genética , Mutação , Oomicetos/patogenicidade , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas Fúngicas/genética , Ácidos Isonicotínicos/farmacologia , Complexo de Endopeptidases do Proteassoma , Proteínas Repressoras/genética , Transdução de Sinais , Tiadiazóis/farmacologia
9.
Amyotroph Lateral Scler ; 13(1): 110-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22117131

RESUMO

Our objective was to identify metabolic pathways affected by ALS using non-targeted metabolomics in plasma, comparing samples from healthy volunteers to those from ALS patients. This discovery could become the basis for the identification of therapeutic targets and diagnostic biomarkers of ALS. Two distinct cross-sectional studies were conducted. Plasma was collected from 62 (Study 1) and 99 (Study 2) participants meeting El Escorial criteria for possible, probable, or definite ALS; 69 (Study 1) and 48 (Study 2) healthy controls samples were collected. Global metabolic profiling was used to detect and evaluate biochemical signatures of ALS. Twenty-three metabolites were significantly altered in plasma from ALS patients in both studies. These metabolites include biochemicals in pathways associated with neuronal change, hypermetabolism, oxidative damage, and mitochondrial dysfunction, all of which are proposed disease mechanisms in ALS. The data also suggest possible hepatic dysfunction associated with ALS. In conclusion, the data presented here provide insight into the pathophysiology of ALS while suggesting promising areas of focus for future studies. The metabolomics approach can generate novel hypotheses regarding ALS disease mechanisms with the potential to identify therapeutic targets and novel diagnostic biomarkers.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/fisiopatologia , Biomarcadores/sangue , Adulto , Idoso , Esclerose Lateral Amiotrófica/tratamento farmacológico , Estudos Transversais , Suplementos Nutricionais , Feminino , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Fármacos Neuroprotetores/uso terapêutico , Riluzol/uso terapêutico
10.
Prog Mol Biol Transl Sci ; 190(1): 219-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008000

RESUMO

Medical abzymology has made a great contribution to the development of general autoimmunity theory: it has put the autoantibodies (Ab) as the key brick of the theory to the level of physiological functionality by providing such Ab with the ability to catalyze and mediate direct and independent cytotoxic effect on cellular and molecular targets. Natural catalytic autoantibodies (abzymes) while being a pool of canonical Abs and possessing catalytic activity belong to the new group of physiologically active substances whose features and properties are evolutionary consolidated in one functionally active biomolecule. Therefore, further studies on Ab-mediated autoAg degradation and other targeted Ab-mediated proteolysis may provide biomarkers of newer generations and thus a supplementary tool for assessing the disease progression and predicting disability of the patients and persons at risks. This chapter is a summary of current knowledge and prognostic perspectives toward catalytic Abs in autoimmunity and thus some autoimmune clinical cases, their role in pathogenesis, and the exploitation of both whole molecules and their constituent parts in developing highly effective targeted drugs of the future to come, and thus the therapeutic protocols being individualized.


Assuntos
Anticorpos Catalíticos , Autoimunidade , Anticorpos Catalíticos/metabolismo , Autoanticorpos/metabolismo , Biomarcadores , Progressão da Doença , Humanos
11.
J Biol Chem ; 285(40): 30516-22, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20675369

RESUMO

Cystic fibrosis (CF) is a life-shortening disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To gain an understanding of the epithelial dysfunction associated with CF mutations and discover biomarkers for therapeutics development, untargeted metabolomic analysis was performed on primary human airway epithelial cell cultures from three separate cohorts of CF patients and non-CF subjects. Statistical analysis revealed a set of reproducible and significant metabolic differences between the CF and non-CF cells. Aside from changes that were consistent with known CF effects, such as diminished cellular regulation against oxidative stress and osmotic stress, new observations on the cellular metabolism in the disease were generated. In the CF cells, the levels of various purine nucleotides, which may function to regulate cellular responses via purinergic signaling, were significantly decreased. Furthermore, CF cells exhibited reduced glucose metabolism in glycolysis, pentose phosphate pathway, and sorbitol pathway, which may further exacerbate oxidative stress and limit the epithelial cell response to environmental pressure. Taken together, these findings reveal novel metabolic abnormalities associated with the CF pathological process and identify a panel of potential biomarkers for therapeutic development using this model system.


Assuntos
Biomarcadores/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Metabolômica , Mucosa Respiratória/metabolismo , Metabolismo dos Carboidratos , Estudos de Coortes , Fibrose Cística/genética , Fibrose Cística/patologia , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Mutação , Pressão Osmótica , Estresse Oxidativo , Nucleosídeos de Purina/genética , Nucleosídeos de Purina/metabolismo , Mucosa Respiratória/patologia
13.
Funct Plant Biol ; 48(7): 717-731, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33896444

RESUMO

Cactus pear (Opuntia ficus-indica) is a high productivity species within the Cactaceae grown in many semiarid parts of the world for food, fodder, forage, and biofuels. O. ficus-indica utilises obligate crassulacean acid metabolism (CAM), an adaptation that greatly improves water-use efficiency (WUE) and reduces crop water usage. To better understand CAM-related metabolites and water-deficit stress responses of O. ficus-indica, comparative metabolic profiling was performed on mesophyll and epidermal tissues collected from well-watered and water-deficit stressed cladodes at 50% relative water content (RWC). Tissues were collected over a 24-h period to identify metabolite levels throughout the diel cycle and analysed using a combination of acidic/basic ultra-high-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) platforms. A total of 382 metabolites, including 210 (55%) named and 172 (45%) unnamed compounds, were characterised across both tissues. Most tricarboxylic acid (TCA) cycle and glycolysis intermediates were depleted in plants undergoing water-deficit stress indicative of CAM idling or post-idling, while the raffinose family oligosaccharides (RFO) accumulated in both mesophyll and epidermal tissues as osmoprotectants. Levels of reduced glutathione and other metabolites of the ascorbate cycle as well as oxylipins, stress hormones such as traumatic acid, and nucleotide degradation products were increased under water-deficit stress conditions. Notably, tryptophan accumulation, an atypical response, was significantly (24-fold) higher during all time points in water-deficit stressed mesophyll tissue compared with well-watered controls. Many of the metabolite increases were indicative of a highly oxidising environment under water-deficit stress. A total of 34 unnamed metabolites also accumulated in response to water-deficit stress indicating that such compounds might play important roles in water-deficit stress tolerance.


Assuntos
Opuntia , Cromatografia Líquida de Alta Pressão , Metabolômica , Espectrometria de Massas em Tandem , Água
14.
Toxicol Pathol ; 37(4): 521-35, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19458390

RESUMO

Peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists such as fenofibrate are used to treat dyslipidemia. Although fenofibrate is considered safe in humans, it is known to cause hepatocarcinogenesis in rodents. To evaluate untargeted metabolic profiling as a tool for gaining insight into the underlying pharmacology and hepatotoxicology, Fischer 344 male rats were dosed with 300 mg/kg/day of fenofibrate for 14 days and the urine and plasma were analyzed on days 2 and 14. A combination of liquid and gas chromatography mass spectrometry returned the profiles of 486 plasma and 932 urinary metabolites. Aside from known pharmacological effects, such as accelerated fatty acid beta-oxidation and reduced plasma cholesterol, new observations on the drug's impact on cellular metabolism were generated. Reductions in TCA cycle intermediates and biochemical evidence of lactic acidosis demonstrated that energy metabolism homeostasis was altered. Perturbation of the glutathione biosynthesis and elevation of oxidative stress markers were observed. Furthermore, tryptophan metabolism was up-regulated, resulting in accumulation of tryptophan metabolites associated with reactive oxygen species generation, suggesting the possibility of oxidative stress as a mechanism of nongenotoxic carcinogenesis. Finally, several metabolites related to liver function, kidney function, cell damage, and cell proliferation were altered by fenofibrate-induced toxicity at this dose.


Assuntos
Fenofibrato/toxicidade , Hipolipemiantes/toxicidade , Fígado/patologia , Metabolômica/métodos , Acidose Láctica/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fenofibrato/administração & dosagem , Cromatografia Gasosa-Espectrometria de Massas , Hipolipemiantes/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Ratos , Ratos Endogâmicos F344 , Testes de Toxicidade Crônica , Triptofano/metabolismo
15.
Psychol Assess ; 29(6): 720-726, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28594215

RESUMO

This study examined the factor structure of the Massachusetts Youth Screening Instrument-Version 2 (MAYSI-2), a brief self-report measure designed to flag clinically significant mental health needs among youth entering the juvenile justice system. Participants were 981 detained youth in the southeastern United States (mean age = 14.58 years; SD = 1.28 years; 67.5% male; 71.5% African American). Confirmatory factor analyses showed that a seven-factor model represented a satisfactory solution for the data, similar to previous research. The factor structure fit well across gender, age group, race (Black/White), and offense type (violent/nonviolent). Given the widespread use of the MAYSI-2 in juvenile justice settings, examining its psychometric properties is of key importance. Implications and limitations of the study are discussed. (PsycINFO Database Record


Assuntos
Delinquência Juvenil/estatística & dados numéricos , Transtornos Mentais/diagnóstico , Escalas de Graduação Psiquiátrica/normas , Psicometria/instrumentação , Adolescente , Feminino , Humanos , Masculino , Sudeste dos Estados Unidos
16.
Genetics ; 160(4): 1661-71, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11973319

RESUMO

To identify Arabidopsis mutants that constitutively express systemic acquired resistance (SAR), we constructed reporter lines expressing the firefly luciferase gene under the control of the SAR-inducible PR-1 promoter (PR-1/luc). After EMS mutagenesis of a well-characterized transgenic line, we screened 250,000 M(2) plants for constitutive expression of the reporter gene in vivo. From a mutant collection containing several hundred putative mutants, we concentrated on 16 mutants lacking spontaneous hypersensitive response (HR) cell death. We mapped 4 of these constitutive immunity (cim) mutants to chromosome arms. Constitutive expression of disease resistance was established by analyzing responses to virulent Peronospora parasitica and Pseudomonas syringae strains, by RNA blot analysis for endogenous marker genes, and by determination of salicylic acid levels in the mutants. The variety of the cim phenotypes allowed us to define distinct steps in both the canonical SAR signaling pathway and a separate pathway for resistance to Erysiphe cichoracearum, active in only a subset of the mutants.


Assuntos
Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Genoma de Planta , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Doenças das Plantas , Ácido Salicílico/metabolismo
17.
Pediatr Pulmonol ; 49(5): 463-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23847148

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a multi-system disease affecting multiple organs and cells besides the respiratory system. Metabolomic profiling allows simultaneous detection of biochemicals originating from cells, organs, or exogenous origin that may be valuable for monitoring of disease severity or in diagnosis. AIM: We hypothesized that metabolomics using serum from children would differentiate CF from non-CF lung disease subjects and would provide insight into metabolism in CF. METHODS: Serum collected from children with CF (n = 31) and 31 age and gender matched children with other lung diseases was used for metabolomic profiling by gas- and liquid-chromatography. Relative concentration of metabolites was compared between the groups using partial least square discriminant analyses (PLS-DA) and linear modeling. RESULTS: A clear separation of the two groups was seen in PLS-DA. Linear model found that among the 459 detected metabolites 92 differed between CF and non-CF. These included known biochemicals in lipid metabolism, oxidants, and markers consistent with abnormalities in bile acid processing. Bacterial metabolites were identified and differed between the groups indicating intestinal dysbiosis in CF. As a novel finding several pathways were markedly different in CF, which jointly point towards decreased activity in the ß-oxidation of fatty acids. These pathways include low ketone bodies, low medium chain carnitines, elevated di-carboxylic acids and decreased 2-hydroxybutyrate from amino acid metabolism in CF compared to non-CF. CONCLUSION: Serum metabolomics discriminated CF from non-CF and show altered cellular energy metabolism in CF potentially reflecting mitochondrial dysfunction. Future studies are indicated to examine their relation to the underlying CF defect and their use as biomarkers for disease severity or for cystic fibrosis transmembrane regulator (CFTR) function in an era of CFTR modifying drugs.


Assuntos
Fibrose Cística/metabolismo , Metabolismo Energético/fisiologia , Metaboloma , Adolescente , Aminoácidos/metabolismo , Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Carnitina/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromatografia Gasosa , Cromatografia Líquida , Fibrose Cística/sangue , Fibrose Cística/fisiopatologia , Ácidos Dicarboxílicos/sangue , Análise Discriminante , Disbiose/sangue , Ácidos Graxos/metabolismo , Feminino , Humanos , Hidroxibutiratos/sangue , Lactente , Corpos Cetônicos/sangue , Modelos Lineares , Metabolismo dos Lipídeos/fisiologia , Masculino , Metabolômica , Microbiota/fisiologia , Oxidantes/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-24984169

RESUMO

Our objective was to identify plasma biomarkers of ALS that can aid in distinguishing patients with ALS from those with disease mimics. In this multi-center study, plasma samples were collected from 172 patients recently diagnosed with ALS, 50 healthy controls, and 73 neurological disease mimics. Samples were analyzed using metabolomics. Using all identified biochemicals detected in > 50% of all samples in the metabolomics analysis, samples were classified as ALS or mimic with 65% sensitivity and 81% specificity by LASSO analysis (AUC of 0.76). A subset panel of 32 candidate biomarkers classified these diagnosis groups with a specificity of 90%/sensitivity 58% (AUC of 0.81). Creatinine was lower in subjects with lower revised ALS Functional Rating Scale (ALSFRS-R) scores. In conclusion, ALS can be distinguished from neurological disease mimics by global biochemical profiling of plasma samples. Our analysis identified ALS versus mimics with relatively high sensitivity. We identified a subset of 32 metabolites that identify patients with ALS with a high specificity. Interestingly, lower creatinine correlates significantly with a lower ALSFRS-R score. Finally, molecules previously reported to be important in disease pathophysiology, such as urate, are included in our metabolite panel.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores/sangue , Adulto , Idoso , Área Sob a Curva , Estudos de Coortes , Progressão da Doença , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Sensibilidade e Especificidade , Máquina de Vetores de Suporte
19.
Mol Plant ; 6(2): 369-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23239830

RESUMO

Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on GC/MS and UHLC/MS/MS(2) platforms. A total of 251 metabolites including 167 named (66.5%) and 84 (33.4%) unnamed compounds were characterized. Only 42 (16.7%) and 74 (29.5%) of compounds showed significantly increased or decreased abundance, respectively, indicating that most compounds were produced constitutively, including highly abundant trehalose, sucrose, and glucose. Several glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle intermediates showed increased abundance at 100% relative water content (RWC) and 50% RWC. Vanillate, a potent antioxidant, was also more abundant in the hydrated state. Many different sugar alcohols and sugar acids were more abundant in the hydrated state. These polyols likely decelerate the rate of water loss during the drying process as well as slow water absorption during rehydration, stabilize proteins, and scavenge reactive oxygen species (ROS). In contrast, nitrogen-rich and γ-glutamyl amino acids, citrulline, and nucleotide catabolism products (e.g. allantoin) were more abundant in the dry states, suggesting that these compounds might play important roles in nitrogen remobilization during rehydration or in ROS scavenging. UV-protective compounds such as 3-(3-hydroxyphenyl)propionate, apigenin, and naringenin, were more abundant in the dry states. Most lipids were produced constitutively, with the exception of choline phosphate, which was more abundant in dry states and likely plays a role in membrane hydration and stabilization. In contrast, several polyunsaturated fatty acids were more abundant in the hydrated states, suggesting that these compounds likely help maintain membrane fluidity during dehydration. Lastly, S. lepidophylla contained seven unnamed compounds that displayed twofold or greater abundance in dry or rehydrating states, suggesting that these compounds might play adaptive roles in DT.


Assuntos
Secas , Metabolômica , Selaginellaceae/fisiologia , Água/metabolismo , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Metabolismo Energético , Glutationa/metabolismo , Nucleotídeos/metabolismo , Selaginellaceae/metabolismo , Álcoois Açúcares/metabolismo
20.
Sci Rep ; 3: 3082, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24170158

RESUMO

Genetically modified (GM) crops currently constitute a significant and growing part of agriculture.An important aspect of GM crop adoption is to demonstrate safety; identifying differences in end points with respect to conventional crops is a part of the safety assessment process [corrected]. Untargeted metabolomics has the ability to profile diverse classes of metabolites and thus could be an adjunct for identification of differences between the GM crop and its conventional counterpart [corrected].To account for environmental effects and introgression of GM traits into diverse genetic backgrounds, we propose that the assessment for GM crop metabolic composition should be understood within the context of the natural variation for the crop. Using a non-targeted metabolomics platform, we profiled 169 metabolites and established their dynamic ranges from the seeds of 49 conventional soybean lines representing the current commercial genetic diversity. We further demonstrated that the metabolome of a GM line had no significant deviation from natural variation within the soybean metabolome, with the exception of changes in the targeted engineered pathway.


Assuntos
Glycine max/genética , Glycine max/metabolismo , Metaboloma , Metabolômica , Sementes/genética , Sementes/metabolismo , Análise por Conglomerados , Biologia Computacional , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA