Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 139(2): 234-44, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837029

RESUMO

The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities.


Assuntos
Insetos/fisiologia , Mamíferos/fisiologia , Paladar , Animais , Células Quimiorreceptoras/fisiologia , Papilas Gustativas/fisiologia , Língua/citologia , Língua/fisiologia
2.
Nature ; 558(7708): 127-131, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849148

RESUMO

The ability of the taste system to identify a tastant (what it tastes like) enables animals to recognize and discriminate between the different basic taste qualities1,2. The valence of a tastant (whether it is appetitive or aversive) specifies its hedonic value and elicits the execution of selective behaviours. Here we examine how sweet and bitter are afforded valence versus identity in mice. We show that neurons in the sweet-responsive and bitter-responsive cortex project to topographically distinct areas of the amygdala, with strong segregation of neural projections conveying appetitive versus aversive taste signals. By manipulating selective taste inputs to the amygdala, we show that it is possible to impose positive or negative valence on a neutral water stimulus, and even to reverse the hedonic value of a sweet or bitter tastant. Remarkably, mice with silenced neurons in the amygdala no longer exhibit behaviour that reflects the valence associated with direct stimulation of the taste cortex, or with delivery of sweet and bitter chemicals. Nonetheless, these mice can still identify and discriminate between tastants, just as wild-type controls do. These results help to explain how the taste system generates stereotypic and predetermined attractive and aversive taste behaviours, and support the existence of distinct neural substrates for the discrimination of taste identity and the assignment of valence.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Comportamento Apetitivo/fisiologia , Aprendizagem da Esquiva/fisiologia , Discriminação Psicológica/fisiologia , Paladar/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Apetitivo/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Clozapina/análogos & derivados , Clozapina/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Paladar/efeitos dos fármacos , Água/farmacologia
3.
Nature ; 548(7667): 330-333, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792937

RESUMO

In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.


Assuntos
Células-Tronco/citologia , Células-Tronco/metabolismo , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Paladar/fisiologia , Animais , Antígenos CD/metabolismo , Gânglios/citologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Semaforina-3A/deficiência , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Células-Tronco/efeitos dos fármacos , Edulcorantes/farmacologia , Paladar/efeitos dos fármacos , Papilas Gustativas/efeitos dos fármacos
4.
Nature ; 527(7579): 512-5, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26580015

RESUMO

Taste is responsible for evaluating the nutritious content of food, guiding essential appetitive behaviours, preventing the ingestion of toxic substances, and helping to ensure the maintenance of a healthy diet. Sweet and bitter are two of the most salient sensory percepts for humans and other animals; sweet taste allows the identification of energy-rich nutrients whereas bitter warns against the intake of potentially noxious chemicals. In mammals, information from taste receptor cells in the tongue is transmitted through multiple neural stations to the primary gustatory cortex in the brain. Recent imaging studies have shown that sweet and bitter are represented in the primary gustatory cortex by neurons organized in a spatial map, with each taste quality encoded by distinct cortical fields. Here we demonstrate that by manipulating the brain fields representing sweet and bitter taste we directly control an animal's internal representation, sensory perception, and behavioural actions. These results substantiate the segregation of taste qualities in the cortex, expose the innate nature of appetitive and aversive taste responses, and illustrate the ability of gustatory cortex to recapitulate complex behaviours in the absence of sensory input.


Assuntos
Comportamento Apetitivo/fisiologia , Aprendizagem da Esquiva/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Vigília/fisiologia , Animais , Comportamento Apetitivo/efeitos da radiação , Aprendizagem da Esquiva/efeitos da radiação , Mapeamento Encefálico , Córtex Cerebral/efeitos da radiação , Discriminação Psicológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Técnicas Estereotáxicas , Percepção Gustatória/efeitos da radiação
5.
Nature ; 517(7534): 373-6, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25383521

RESUMO

The mammalian taste system is responsible for sensing and responding to the five basic taste qualities: sweet, sour, bitter, salty and umami. Previously, we showed that each taste is detected by dedicated taste receptor cells (TRCs) on the tongue and palate epithelium. To understand how TRCs transmit information to higher neural centres, we examined the tuning properties of large ensembles of neurons in the first neural station of the gustatory system. Here, we generated and characterized a collection of transgenic mice expressing a genetically encoded calcium indicator in central and peripheral neurons, and used a gradient refractive index microendoscope combined with high-resolution two-photon microscopy to image taste responses from ganglion neurons buried deep at the base of the brain. Our results reveal fine selectivity in the taste preference of ganglion neurons; demonstrate a strong match between TRCs in the tongue and the principal neural afferents relaying taste information to the brain; and expose the highly specific transfer of taste information between taste cells and the central nervous system.


Assuntos
Gânglio Geniculado/citologia , Neurônios/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Língua/fisiologia , Animais , Cálcio/metabolismo , Camundongos , Camundongos Transgênicos , Papilas Gustativas/citologia , Papilas Gustativas/fisiologia , Língua/citologia , Língua/inervação
6.
Nature ; 494(7438): 472-5, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23407495

RESUMO

In the tongue, distinct classes of taste receptor cells detect the five basic tastes; sweet, sour, bitter, sodium salt and umami. Among these qualities, bitter and sour stimuli are innately aversive, whereas sweet and umami are appetitive and generally attractive to animals. By contrast, salty taste is unique in that increasing salt concentration fundamentally transforms an innately appetitive stimulus into a powerfully aversive one. This appetitive-aversive balance helps to maintain appropriate salt consumption, and represents an important part of fluid and electrolyte homeostasis. We have shown previously that the appetitive responses to NaCl are mediated by taste receptor cells expressing the epithelial sodium channel, ENaC, but the cellular substrate for salt aversion was unknown. Here we examine the cellular and molecular basis for the rejection of high concentrations of salts. We show that high salt recruits the two primary aversive taste pathways by activating the sour- and bitter-taste-sensing cells. We also demonstrate that genetic silencing of these pathways abolishes behavioural aversion to concentrated salt, without impairing salt attraction. Notably, mice devoid of salt-aversion pathways show unimpeded, continuous attraction even to very high concentrations of NaCl. We propose that the 'co-opting' of sour and bitter neural pathways evolved as a means to ensure that high levels of salt reliably trigger robust behavioural rejection, thus preventing its potentially detrimental effects on health.


Assuntos
Cloreto de Sódio na Dieta/farmacologia , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/metabolismo , Paladar/efeitos dos fármacos , Paladar/fisiologia , Animais , Apetite/efeitos dos fármacos , Apetite/genética , Apetite/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Inativação Gênica , Camundongos , Camundongos Knockout , Mutação/genética , Fosfolipase C beta/deficiência , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Cloreto de Sódio na Dieta/administração & dosagem , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Paladar/genética , Papilas Gustativas/citologia
7.
Nature ; 464(7286): 297-301, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20107438

RESUMO

Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.


Assuntos
Sódio/fisiologia , Papilas Gustativas/fisiologia , Paladar/genética , Animais , Comportamento/fisiologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Camundongos , Camundongos Transgênicos , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo
8.
Science ; 381(6660): 906-910, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616369

RESUMO

Despite the potential importance of genital mechanosensation for sexual reproduction, little is known about how perineal touch influences mating. We explored how mechanosensation affords exquisite awareness of the genitals and controls reproduction in mice and humans. Using genetic strategies and in vivo functional imaging, we demonstrated that the mechanosensitive ion channel PIEZO2 (piezo-type mechanosensitive ion channel component 2) is necessary for behavioral sensitivity to perineal touch. PIEZO2 function is needed for triggering a touch-evoked erection reflex and successful mating in both male and female mice. Humans with complete loss of PIEZO2 function have genital hyposensitivity and experience no direct pleasure from gentle touch or vibration. Together, our results help explain how perineal mechanoreceptors detect the gentlest of stimuli and trigger physiologically important sexual responses, thus providing a platform for exploring the sensory basis of sexual pleasure and its relationship to affective touch.


Assuntos
Canais Iônicos , Mecanorreceptores , Ereção Peniana , Comportamento Sexual , Percepção do Tato , Animais , Feminino , Humanos , Masculino , Camundongos , Canais Iônicos/genética , Canais Iônicos/fisiologia , Mecanorreceptores/fisiologia
9.
Nature ; 444(7117): 288-94, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17108952

RESUMO

The emerging picture of taste coding at the periphery is one of elegant simplicity. Contrary to what was generally believed, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes: sweet, sour, bitter, salty and umami. Importantly, receptor cells for each taste quality function as dedicated sensors wired to elicit stereotypic responses.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Paladar/fisiologia , Animais , Humanos , Transdução de Sinais
10.
Nature ; 442(7105): 934-8, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16929298

RESUMO

Mammals taste many compounds yet use a sensory palette consisting of only five basic taste modalities: sweet, bitter, sour, salty and umami (the taste of monosodium glutamate). Although this repertoire may seem modest, it provides animals with critical information about the nature and quality of food. Sour taste detection functions as an important sensory input to warn against the ingestion of acidic (for example, spoiled or unripe) food sources. We have used a combination of bioinformatics, genetic and functional studies to identify PKD2L1, a polycystic-kidney-disease-like ion channel, as a candidate mammalian sour taste sensor. In the tongue, PKD2L1 is expressed in a subset of taste receptor cells distinct from those responsible for sweet, bitter and umami taste. To examine the role of PKD2L1-expressing taste cells in vivo, we engineered mice with targeted genetic ablations of selected populations of taste receptor cells. Animals lacking PKD2L1-expressing cells are completely devoid of taste responses to sour stimuli. Notably, responses to all other tastants remained unaffected, proving that the segregation of taste qualities even extends to ionic stimuli. Our results now establish independent cellular substrates for four of the five basic taste modalities, and support a comprehensive labelled-line mode of taste coding at the periphery. Notably, PKD2L1 is also expressed in specific neurons surrounding the central canal of the spinal cord. Here we demonstrate that these PKD2L1-expressing neurons send projections to the central canal, and selectively trigger action potentials in response to decreases in extracellular pH. We propose that these cells correspond to the long-sought components of the cerebrospinal fluid chemosensory system. Taken together, our results suggest a common basis for acid sensing in disparate physiological settings.


Assuntos
Glicoproteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Paladar/fisiologia , Língua/citologia , Língua/fisiologia , Potenciais de Ação , Animais , Canais de Cálcio , Biologia Computacional , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fosfoproteínas/genética , Receptores de Superfície Celular , Medula Espinal/citologia , Medula Espinal/metabolismo , Língua/metabolismo
11.
J Neurosci ; 30(27): 9271-9, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20610762

RESUMO

The odor response properties of a mammalian olfactory sensory neuron (OSN) are determined by the tightly regulated expression of a single member of a very large family of odorant receptors (ORs). The OR also plays an important role in focusing the central projections of all OSNs expressing that particular receptor to a pair of stereotypic locations (glomeruli) in each olfactory bulb (OB), thus creating a spatial map of odor responses in the brain. Here we show that when initiated late in neural development, transgenic expression of one OR in almost all OSNs has little influence on the architecture of the OB in mice. In contrast, early OR-transgene expression (mediated by the Ggamma8-promoter) in 50-70% of OSNs grossly distorts the morphology of glomeruli and alters the projection patterns of many residual OSNs not expressing the transgene. Interestingly, this disruption of targeting persists in adult animals despite the downregulation of Ggamma8 and transgenic OR expression that occurs as olfactory neurogenesis declines. Indeed, functional imaging studies reveal a dramatic decrease in the complexity of responses to odorants in adult Ggamma8-transgenic OR mice. Thus, we show that initiation of transgenic OR expression early in the development of OSNs, rather than just the extent of transgene expression, determines its effectiveness at modifying OB anatomy and function. Together, these data imply that OR-expression timing needs to be very tightly controlled to achieve the precise wiring and function of the mammalian olfactory system.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Rede Nervosa/metabolismo , Condutos Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Animais , Animais Recém-Nascidos , Embrião de Mamíferos , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Rede Nervosa/embriologia , Rede Nervosa/crescimento & desenvolvimento , Odorantes , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Receptores Odorantes/classificação , Receptores Odorantes/genética , beta-Galactosidase/metabolismo
12.
Nature ; 434(7030): 225-9, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15759003

RESUMO

The sense of taste provides animals with valuable information about the nature and quality of food. Bitter taste detection functions as an important sensory input to warn against the ingestion of toxic and noxious substances. T2Rs are a family of approximately 30 highly divergent G-protein-coupled receptors (GPCRs) that are selectively expressed in the tongue and palate epithelium and are implicated in bitter taste sensing. Here we demonstrate, using a combination of genetic, behavioural and physiological studies, that T2R receptors are necessary and sufficient for the detection and perception of bitter compounds, and show that differences in T2Rs between species (human and mouse) can determine the selectivity of bitter taste responses. In addition, we show that mice engineered to express a bitter taste receptor in 'sweet cells' become strongly attracted to its cognate bitter tastants, whereas expression of the same receptor (or even a novel GPCR) in T2R-expressing cells resulted in mice that are averse to the respective compounds. Together these results illustrate the fundamental principle of bitter taste coding at the periphery: dedicated cells act as broadly tuned bitter sensors that are wired to mediate behavioural aversion.


Assuntos
Preferências Alimentares/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Paladar/efeitos dos fármacos , Paladar/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Palato/efeitos dos fármacos , Palato/metabolismo , Estimulação Física , Especificidade da Espécie , Especificidade por Substrato , Língua/efeitos dos fármacos , Língua/metabolismo
13.
Elife ; 102021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825887

RESUMO

Somatosensory neurons with cell bodies in the dorsal root ganglia (DRG) project to the skin, muscles, bones, and viscera to detect touch and temperature as well as to mediate proprioception and many types of interoception. In addition, the somatosensory system conveys the clinically relevant noxious sensations of pain and itch. Here, we used single nuclear transcriptomics to characterize transcriptomic classes of human DRG neurons that detect these diverse types of stimuli. Notably, multiple types of human DRG neurons have transcriptomic features that resemble their mouse counterparts although expression of genes considered important for sensory function often differed between species. More unexpectedly, we identified several transcriptomic classes with no clear equivalent in the other species. This dataset should serve as a valuable resource for the community, for example as means of focusing translational efforts on molecules with conserved expression across species.


Assuntos
Núcleo Celular/genética , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Transcriptoma , Adulto , Animais , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Célula Única
14.
Neuron ; 109(2): 285-298.e5, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33186546

RESUMO

Single-cell RNA-sequencing and in vivo functional imaging provide expansive but disconnected views of neuronal diversity. Here, we developed a strategy for linking these modes of classification to explore molecular and cellular mechanisms responsible for detecting and encoding touch. By broadly mapping function to neuronal class, we uncovered a clear transcriptomic logic responsible for the sensitivity and selectivity of mammalian mechanosensory neurons. Notably, cell types with divergent gene-expression profiles often shared very similar properties, but we also discovered transcriptomically related neurons with specialized and divergent functions. Applying our approach to knockout mice revealed that Piezo2 differentially tunes all types of mechanosensory neurons with marked cell-class dependence. Together, our data demonstrate how mechanical stimuli recruit characteristic ensembles of transcriptomically defined neurons, providing rules to help explain the discriminatory power of touch. We anticipate a similar approach could expose fundamental principles governing representation of information throughout the nervous system.


Assuntos
Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Tato/fisiologia , Gânglio Trigeminal/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Estimulação Física/efeitos adversos , Estimulação Física/métodos , Vibração/efeitos adversos
15.
Pain ; 161(9): 2212-2224, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379225

RESUMO

ABSTRACT: Single cell sequencing has provided unprecedented information about the transcriptomic diversity of somatosensory systems. Here, we describe a simple and versatile in situ hybridization (ISH)-based approach for mapping this information back to the tissue. We illustrate the power of this approach by demonstrating that ISH localization with just 8 probes is sufficient to distinguish all major classes of neurons in sections of the trigeminal ganglion. To further simplify the approach and make transcriptomic class assignment and cell segmentation automatic, we developed a machine learning approach for analyzing images from multiprobe ISH experiments. We demonstrate the power of in situ class assignment by examining the expression patterns of voltage-gated sodium channels that play roles in distinct somatosensory processes and pain. Specifically, this analysis resolves intrinsic problems with single cell sequencing related to the sparseness of data leading to ambiguity about gene expression patterns. We also used the multiplex in situ approach to study the projection fields of the different neuronal classes. Our results demonstrate that the surface of the eye and meninges are targeted by broad arrays of neural classes despite their very different sensory properties but exhibit idiotypic patterns of innervation at a quantitative level. Very surprisingly, itch-related neurons extensively innervated the meninges, indicating that these transcriptomic cell classes are not simply labeled lines for triggering itch. Together, these results substantiate the importance of a sensory neuron's peripheral and central connections as well as its transcriptomic class in determining its role in sensation.


Assuntos
Transcriptoma , Gânglio Trigeminal , Hibridização In Situ , Aprendizado de Máquina , Neurônios
16.
Elife ; 82019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31592768

RESUMO

In mice, spared nerve injury replicates symptoms of human neuropathic pain and induces upregulation of many genes in somatosensory neurons. Here we used single cell transcriptomics to probe the effects of partial infraorbital transection of the trigeminal nerve at the cellular level. Uninjured neurons were unaffected by transection of major nerve branches, segregating into many different classes. In marked contrast, axotomy rapidly transformed damaged neurons into just two new and closely-related classes where almost all original identity was lost. Remarkably, sensory neurons also adopted this transcriptomic state following various minor peripheral injuries. By genetically marking injured neurons, we showed that the injury-induced transformation was reversible, with damaged cells slowly reacquiring normal gene expression profiles. Thus, our data expose transcriptomic plasticity, previously thought of as a driver of chronic pain, as a programed response to many types of injury and a potential mechanism for regulating sensation during wound healing.


Assuntos
Células Receptoras Sensoriais/patologia , Estresse Fisiológico , Traumatismos do Nervo Trigêmeo/fisiopatologia , Animais , Perfilação da Expressão Gênica , Camundongos , Análise de Célula Única
17.
PLoS One ; 13(2): e0193129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29485996

RESUMO

Design and engineering of complex knockin mice has revolutionized the in vivo manipulation of genetically defined cells. Recently development of the bacterial clustered regularly interspersed short palindromic repeats (CRISPR) associated protein 9 (Cas9) system for single site cleavage of mammalian genomes has opened the way for rapid generation of knockin mice by targeting homology directed repair to selected cleavage sites. We used this approach to generate new lines of mice that will be useful for a variety of aspects of neuroscience research. These lines have been bred to homozygosity and details of the expression and function of the transgenes are reported. Two lines target the Rosa26-locus and have been engineered to allow Cre-dependent expression of the avian tva receptor, and Cre-dependent expression of a cell surface targeted spaghetti-monster carrying many copies of the "ollas-tag". Another line expresses red fluorescent protein and tva in Tac1-positive neurons; the fourth line targets FlpO expression to Plekhg1 expressing neurons, providing a powerful approach to modify gene expression in thalamic excitatory neurons.


Assuntos
Técnicas de Introdução de Genes , Loci Gênicos , Neurônios/metabolismo , Oócitos/metabolismo , RNA não Traduzido/genética , Animais , Sistemas CRISPR-Cas , Genes Reporter , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos , RNA Guia de Cinetoplastídeos , Proteína Vermelha Fluorescente
18.
PLoS One ; 12(9): e0185543, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957441

RESUMO

The trigeminal ganglion contains somatosensory neurons that detect a range of thermal, mechanical and chemical cues and innervate unique sensory compartments in the head and neck including the eyes, nose, mouth, meninges and vibrissae. We used single-cell sequencing and in situ hybridization to examine the cellular diversity of the trigeminal ganglion in mice, defining thirteen clusters of neurons. We show that clusters are well conserved in dorsal root ganglia suggesting they represent distinct functional classes of somatosensory neurons and not specialization associated with their sensory targets. Notably, functionally important genes (e.g. the mechanosensory channel Piezo2 and the capsaicin gated ion channel Trpv1) segregate into multiple clusters and often are expressed in subsets of cells within a cluster. Therefore, the 13 genetically-defined classes are likely to be physiologically heterogeneous rather than highly parallel (i.e., redundant) lines of sensory input. Our analysis harnesses the power of single-cell sequencing to provide a unique platform for in silico expression profiling that complements other approaches linking gene-expression with function and exposes unexpected diversity in the somatosensory system.


Assuntos
Ensaios de Triagem em Larga Escala , Neurônios/citologia , Análise de Célula Única , Nervo Trigêmeo/citologia , Animais , Capsaicina/farmacologia , Gânglios Espinais/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/fisiologia , Transcriptoma
19.
PLoS One ; 7(7): e41899, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848650

RESUMO

In mammals, odorants are detected by a large family of receptors that are each expressed in just a small subset of olfactory sensory neurons (OSNs). Here we describe a strain of transgenic mice engineered to express an octanal receptor in almost all OSNs. Remarkably, octanal triggered a striking and involuntary phenotype in these animals, with passive exposure regularly inducing seizures. Octanal exposure invariably resulted in widespread activation of OSNs but interestingly seizures only occurred in 30-40% of trials. We hypothesized that this reflects the need for the olfactory system to filter strong but slowly-changing backgrounds from salient signals. Therefore we used an olfactometer to control octanal delivery and demonstrated suppression of responses whenever this odorant is delivered slowly. By contrast, rapid exposure of the mice to octanal induced seizure in every trial. Our results expose new details of olfactory processing and provide a robust and non-invasive platform for studying epilepsy.


Assuntos
Odorantes , Convulsões/etiologia , Aldeídos/farmacologia , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia
20.
Science ; 333(6047): 1262-6, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21885776

RESUMO

The taste system is one of our fundamental senses, responsible for detecting and responding to sweet, bitter, umami, salty, and sour stimuli. In the tongue, the five basic tastes are mediated by separate classes of taste receptor cells each finely tuned to a single taste quality. We explored the logic of taste coding in the brain by examining how sweet, bitter, umami, and salty qualities are represented in the primary taste cortex of mice. We used in vivo two-photon calcium imaging to demonstrate topographic segregation in the functional architecture of the gustatory cortex. Each taste quality is represented in its own separate cortical field, revealing the existence of a gustotopic map in the brain. These results expose the basic logic for the central representation of taste.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Paladar/fisiologia , Vias Aferentes , Animais , Córtex Cerebral/citologia , Cicloeximida , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Molecular , Cloreto de Sódio , Glutamato de Sódio , Edulcorantes , Papilas Gustativas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA