Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 69(1): 37-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25190580

RESUMO

Extracellular phosphatase production by phytoplankton was investigated in the moderately eutrophic Lipno reservoir, Czech Republic during 2009 and 2010. We hypothesized that production of extracellular phosphatases is an additional mechanism of phosphorus acquisition enabling producers to survive rather than to dominate the phytoplankton. Hence, we examined the relationship between light availability and phosphatase production, as light plays an important role in polymictic environments. Bulk phosphatase activity was measured using a common fluorometric assay, and the production of phosphatases was studied using the Fluorescently Labelled Enzyme Activity technique, which enabled direct microscopic detection of phosphatase-positive cells. In total, 29 taxa of phytoplankton were identified during both years. Only 17 taxa from the total number of 29 showed production of extracellular phosphatases. Species dominating the phytoplankton rarely produced extracellular phosphatases. In contrast, taxa exhibiting phosphatase activity were present in low biomass in the phytoplankton assemblage. Moreover, there was a significant relationship between the proportion of phosphatase positive species in samples and the Z(eu):Z(mix) ratio (a proxy of light availability). A laboratory experiment with different light intensities confirmed the influence of light on production of phosphatases. Our seasonal study confirmed that extracellular phosphatase production is common in low-abundance populations but not in dominant taxa of the phytoplankton. It also suggested the importance of sufficient light conditions for the production of extracellular phosphatases.


Assuntos
Luz , Monoéster Fosfórico Hidrolases/biossíntese , Fitoplâncton/enzimologia , Fitoplâncton/efeitos da radiação
2.
Environ Microbiome ; 19(1): 31, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720385

RESUMO

BACKGROUND: Protists are essential contributors to eukaryotic diversity and exert profound influence on carbon fluxes and energy transfer in freshwaters. Despite their significance, there is a notable gap in research on protistan dynamics, particularly in the deeper strata of temperate lakes. This study aimed to address this gap by integrating protists into the well-described spring dynamics of Rímov reservoir, Czech Republic. Over a 2-month period covering transition from mixing to established stratification, we collected water samples from three reservoir depths (0.5, 10 and 30 m) with a frequency of up to three times per week. Microbial eukaryotic and prokaryotic communities were analysed using SSU rRNA gene amplicon sequencing and dominant protistan groups were enumerated by Catalysed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). Additionally, we collected samples for water chemistry, phyto- and zooplankton composition analyses. RESULTS: Following the rapid changes in environmental and biotic parameters during spring, protistan and bacterial communities displayed swift transitions from a homogeneous community to distinct strata-specific communities. A prevalence of auto- and mixotrophic protists dominated by cryptophytes was associated with spring algal bloom-specialized bacteria in the epilimnion. In contrast, the meta- and hypolimnion showcased a development of a protist community dominated by putative parasitic Perkinsozoa, detritus or particle-associated ciliates, cercozoans, telonemids and excavate protists (Kinetoplastida), co-occurring with bacteria associated with lake snow. CONCLUSIONS: Our high-resolution sampling matching the typical doubling time of microbes along with the combined microscopic and molecular approach and inclusion of all main components of the microbial food web allowed us to unveil depth-specific populations' successions and interactions in a deep lentic ecosystem.

3.
Microbiome ; 11(1): 112, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210505

RESUMO

BACKGROUND: Planktonic microbial communities have critical impacts on the pelagic food web and water quality status in freshwater ecosystems, yet no general model of bacterial community assembly linked to higher trophic levels and hydrodynamics has been assessed. In this study, we utilized a 2-year survey of planktonic communities from bacteria to zooplankton in three freshwater reservoirs to investigate their spatiotemporal dynamics. RESULTS: We observed site-specific occurrence and microdiversification of bacteria in lacustrine and riverine environments, as well as in deep hypolimnia. Moreover, we determined recurrent bacterial seasonal patterns driven by both biotic and abiotic conditions, which could be integrated into the well-known Plankton Ecology Group (PEG) model describing primarily the seasonalities of larger plankton groups. Importantly, bacteria with different ecological potentials showed finely coordinated successions affiliated with four seasonal phases, including the spring bloom dominated by fast-growing opportunists, the clear-water phase associated with oligotrophic ultramicrobacteria, the summer phase characterized by phytoplankton bloom-associated bacteria, and the fall/winter phase driven by decay-specialists. CONCLUSIONS: Our findings elucidate the major principles driving the spatiotemporal microbial community distribution in freshwater ecosystems. We suggest an extension to the original PEG model by integrating new findings on recurrent bacterial seasonal trends. Video Abstract.


Assuntos
Ecossistema , Plâncton , Animais , Fitoplâncton , Zooplâncton , Bactérias/genética , Estações do Ano
4.
Microbiome ; 11(1): 15, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36698172

RESUMO

BACKGROUND: The phytoplankton spring bloom in freshwater habitats is a complex, recurring, and dynamic ecological spectacle that unfolds at multiple biological scales. Although enormous taxonomic shifts in microbial assemblages during and after the bloom have been reported, genomic information on the microbial community of the spring bloom remains scarce. RESULTS: We performed a high-resolution spatio-temporal sampling of the spring bloom in a freshwater reservoir and describe a multitude of previously unknown taxa using metagenome-assembled genomes of eukaryotes, prokaryotes, and viruses in combination with a broad array of methodologies. The recovered genomes reveal multiple distributional dynamics for several bacterial groups with progressively increasing stratification. Analyses of abundances of metagenome-assembled genomes in concert with CARD-FISH revealed remarkably similar in situ doubling time estimates for dominant genome-streamlined microbial lineages. Discordance between quantitations of cryptophytes arising from sequence data and microscopic identification suggested the presence of hidden, yet extremely abundant aplastidic cryptophytes that were confirmed by CARD-FISH analyses. Aplastidic cryptophytes are prevalent throughout the water column but have never been considered in prior models of plankton dynamics. We also recovered the first metagenomic-assembled genomes of freshwater protists (a diatom and a haptophyte) along with thousands of giant viral genomic contigs, some of which appeared similar to viruses infecting haptophytes but owing to lack of known representatives, most remained without any indication of their hosts. The contrasting distribution of giant viruses that are present in the entire water column to that of parasitic perkinsids residing largely in deeper waters allows us to propose giant viruses as the biological agents of top-down control and bloom collapse, likely in combination with bottom-up factors like a nutrient limitation. CONCLUSION: We reconstructed thousands of genomes of microbes and viruses from a freshwater spring bloom and show that such large-scale genome recovery allows tracking of planktonic succession in great detail. However, integration of metagenomic information with other methodologies (e.g., microscopy, CARD-FISH) remains critical to reveal diverse phenomena (e.g., distributional patterns, in situ doubling times) and novel participants (e.g., aplastidic cryptophytes) and to further refine existing ecological models (e.g., factors affecting bloom collapse). This work provides a genomic foundation for future approaches towards a fine-scale characterization of the organisms in relation to the rapidly changing environment during the course of the freshwater spring bloom. Video Abstract.


Assuntos
Metagenoma , Vírus , Água Doce , Bactérias , Plâncton , Vírus/genética , Eucariotos/genética , Água
5.
ISME J ; 13(4): 1056-1071, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610231

RESUMO

Freshwater environments teem with microbes that do not have counterparts in culture collections or genetic data available in genomic repositories. Currently, our apprehension of evolutionary ecology of freshwater bacteria is hampered by the difficulty to establish organism models for the most representative clades. To circumvent the bottlenecks inherent to the cultivation-based techniques, we applied ecogenomics approaches in order to unravel the evolutionary history and the processes that drive genome architecture in hallmark freshwater lineages from the phylum Planctomycetes. The evolutionary history inferences showed that sediment/soil Planctomycetes transitioned to aquatic environments, where they gave rise to new freshwater-specific clades. The most abundant lineage was found to have the most specialised lifestyle (increased regulatory genetic circuits, metabolism tuned for mineralization of proteinaceous sinking aggregates, psychrotrophic behaviour) within the analysed clades and to harbour the smallest freshwater Planctomycetes genomes, highlighting a genomic architecture shaped by niche-directed evolution (through loss of functions and pathways not needed in the newly acquired freshwater niche).


Assuntos
Bactérias/genética , Evolução Molecular , Água Doce/microbiologia , Genoma Bacteriano , Bactérias/classificação , Ecossistema , Genômica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA