Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Chembiochem ; 24(11): e202200700, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36922352

RESUMO

Horseradish peroxidase (HRP) is a pivotal biocatalyst for biosensor development and fine chemical synthesis. HRP proteins are mostly extracted and purified from the roots of horseradish because the solubility and productivity of recombinant HRP in bacteria are significantly low. In this study, we investigate the reconstitution system of split HRP fragments to improve its soluble expression levels in E. coli allowing the cost-effective production of bioactive HRPs. To promote the effective association between two HRP fragments (HRPn and HRPc), we exploit SpyTag-SpyCatcher chemistry, a versatile protein coupling method with high affinity and selectivity. Each HRP fragment was genetically fused with SpyTag and SpyCatcher, respectively, exhibiting soluble expression in the E. coli cytoplasm. The engineered split HRPs were effectively and irreversibly reconstituted into a biologically active and stable assembly that can catalyze intrinsic enzymatic reactions. Compared to the chaperone co-expression system, our approach shows that the production yield of soluble HRP is comparable, but the purity of the final product is relatively high. Therefore, our results can be applied to the high-yield production of recombinant HRP variants and other difficult-to-express proteins in bacteria without complex downstream processes.


Assuntos
Escherichia coli , Peroxidase do Rábano Silvestre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Small ; 14(52): e1802618, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30398698

RESUMO

With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA and zinc fingers (ZnFs) for targeted protein delivery is presented. Two types of ZnFs with different sequence specificities are genetically fused to a targeting moiety and a protein cargo, respectively. Double-stranded DNA with multiple ZnF-binding sequences is grafted onto inorganic nanoparticles, followed by conjugation with the ZnF-fused proteins, generating the assembly of NNPs with a uniform size distribution and high stability. The approach enables controlled loading of a protein cargo on the NNPs, offering a high cytosolic delivery efficiency and target specificity. The utility and potential of the assembly as a versatile protein delivery vehicle is demonstrated based on their remarkable antitumor activity and target specificity with negligible toxicity in a xenograft mice model.


Assuntos
DNA/química , Nanopartículas/química , Nucleoproteínas/química , Proteínas/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Ligação Proteica , Dedos de Zinco
3.
Angew Chem Int Ed Engl ; 54(3): 923-6, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25425202

RESUMO

Nanoparticle clusters (NPCs) have attracted significant interest owing to their unique characteristics arising from their collective individual properties. Nonetheless, the construction of NPCs in a structurally well-defined and size-controllable manner remains a challenge. Here we demonstrate a strategy to construct size-controlled NPCs using the DNA-binding zinc finger (ZnF) protein. Biotinylated ZnF was conjugated to DNA templates with different lengths, followed by incubation with neutravidin-conjugated nanoparticles. The sequence specificity of ZnF and programmable DNA templates enabled a size-controlled construction of NPCs, resulting in a homogeneous size distribution. We demonstrated the utility of magnetic NPCs by showing a three-fold increase in the spin-spin relaxivity in MRI compared with Feridex. Furthermore, folate-conjugated magnetic NPCs exhibited a specific targeting ability for HeLa cells. The present approach can be applicable to other nanoparticles, finding wide applications in many areas such as disease diagnosis, imaging, and delivery of drugs and genes.


Assuntos
DNA/metabolismo , Nanopartículas de Magnetita/química , Proteínas/metabolismo , Avidina/química , Biotinilação , DNA/química , Células HeLa , Humanos , Substâncias Intercalantes/química , Microscopia de Fluorescência , Ligação Proteica , Proteínas/química , Dedos de Zinco
4.
Angew Chem Int Ed Engl ; 54(41): 12020-4, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26315561

RESUMO

Targeted therapy based on protein-drug conjugates has attracted significant attention owing to its high efficacy and low side effects. However, efficient and stable drug conjugation to a protein binder remains a challenge. Herein, a chemoenzymatic method to generate highly stable and homogenous drug conjugates with high efficiency is presented. The approach comprises the insertion of the CaaX sequence at the C-terminal end of the protein binder, prenylation using farnesyltransferase, and drug conjugation through an oxime ligation reaction. MMAF and an EGFR-specific repebody are used as the antitumor agent and protein binder, respectively. The method enables the precisely controlled synthesis of repebody-drug conjugates with high yield and homogeneity. The utility of this approach is illustrated by the notable stability of the repebody-drug conjugates in human plasma, negligible off-target effects, and a remarkable antitumor activity in vivo. The present method can be widely used for generating highly homogeneous and stable PDCs for targeted therapy.


Assuntos
Antineoplásicos/química , Receptores ErbB/metabolismo , Oligopeptídeos/química , Oximas/química , Proteínas/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Farnesiltranstransferase/metabolismo , Humanos , Camundongos Nus , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/uso terapêutico , Oximas/metabolismo , Ligação Proteica , Prenilação de Proteína , Proteínas/metabolismo , Proteínas/uso terapêutico
5.
Immune Netw ; 22(3): e26, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35799707

RESUMO

IL-22, a pleiotropic cytokine, is known to have a profound effect on the regeneration of damaged intestinal barriers. The tissue-protective properties of IL-22 are expected to be potentially exploited in the attenuation and treatment of colitis. However, because of the disease-promoting role of IL-22 in chronic inflammation, a comprehensive evaluation is required to translate IL-22 into the clinical domain. Here, we present the effective production of soluble human IL-22 in bacteria to prove whether recombinant IL-22 has the ability to ameliorate colitis and inflammation. IL-22 was expressed in the form of a biologically active monomer and non-functional oligomers. Monomeric IL-22 (mIL-22) was highly purified through a series of 3 separate chromatographic methods and an enzymatic reaction. We reveal that the resulting mIL-22 is correctly folded and is able to phosphorylate STAT3 in HT-29 cells. Subsequently, we demonstrate that mIL-22 enables the attenuation of dextran sodium sulfate-induced acute colitis in mice, as well as the suppression of pro-inflammatory cytokine production. Collectively, our results suggest that the recombinant mIL-22 is suitable to study the biological roles of endogenous IL-22 in immune responses and can be developed as a biological agent associated with inflammatory disorders.

6.
J Biotechnol ; 340: 57-63, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506803

RESUMO

Enterokinase is one of the hydrolases that catalyze hydrolysis to regulate biological processes in intestinal visceral mucosa. Enterokinase plays an essential role in accelerating the process of protein digestion as it converts trypsinogen into active trypsin by accurately recognizing and cleaving a specific peptide sequence, (Asp)4-Lys. Due to its exceptional substrate specificity, enterokinase is widely used as a versatile molecular tool in various bioprocessing, especially in removing fusion tags from recombinant proteins. Despite its biotechnological importance, mass production of soluble enterokinase in bacteria still remains an unsolved challenge. Here, we present an effective production strategy of human enterokinase using tandemly linked solubility enhancers consisting of thioredoxin, phosphoglycerate kinase or maltose-binding protein. The resulting enterokinases exhibited significantly enhanced solubility and bacterial expression level while retaining enzymatic activity, which demonstrates that combinatorial design of fusion proteins has the potential to provide an efficient way to produce recombinant proteins in bacteria.


Assuntos
Enteropeptidase , Escherichia coli , Sequência de Aminoácidos , Enteropeptidase/genética , Enteropeptidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Solubilidade
7.
iScience ; 24(2): 102104, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33615202

RESUMO

Systematic control of in vivo behavior of protein-based therapeutics is considered highly desirable for improving their clinical outcomes. Modulation of biochemical properties including molecular weight, surface charge, and binding affinity has thus been suggested to enhance their therapeutic effects. However, establishing a relationship between the binding affinity and tumor localization remains a debated issue. Here we investigate the influence of the binding affinity of proteins on tumor localization by using four repebodies having different affinities to EGFR. Biochemical analysis and molecular imaging provided direct evidence that optimal affinity with balanced target binding and dissociation can facilitate deep penetration and accumulation of protein binders in tumors by overcoming the binding-site-barrier effect. Our findings suggest that binding kinetics-based protein design can be implicated in the development of fine-tuned protein therapeutics for cancers.

8.
Anal Chim Acta ; 1126: 154-162, 2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32736719

RESUMO

The quest for highly sensitive and specific detection of disease biomarkers is high, despite many advances in analysis system. Here, we present a sensitive immunoassay platform using DNA-tethered gold nanoparticles and DNA-binding zinc fingers (ZFs). Monomeric alkaline phosphatase (mAP) and human TNF-α were employed as a signal generator and a disease biomarker, respectively. Gold nanoparticles (AuNPs) were first grafted with double-stranded DNAs having specific sequences for two different types of ZFs (QNK and zif268). The alkaline phosphatase and TNF-α-specific protein binder were genetically fused to each of two different types of ZFs, respectively, followed by conjugation with the DNA-tethered AuNPs in a sequence-specific manner. The use of the functionalized AuNPs as a signal generator in a colorimetric immunoassay of TNF-α led to LOD of 120 pg/ml, showing about 161-fold higher sensitivity than a protein binder-fused mAP. The present immunoassay platform could be applied to other analytes by simply replacing a targeting moiety, allowing a versatile and reproducible colorimetric immunoassay.


Assuntos
Ouro , Nanopartículas Metálicas , Colorimetria , Humanos , Imunoensaio , Dedos de Zinco
9.
Nanoscale ; 12(8): 4975-4981, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32057052

RESUMO

With the increasing number of identified intracellular drug targets, cytosolic drug delivery has gained much attention. Despite advances in synthetic drug carriers, however, construction of homogeneous and biocompatible nanostructures in a controllable manner still remains a challenge in a translational medicine. Herein, we present the modular design and assembly of functional DNA nanostructures through sequence-specific interactions between zinc-finger proteins (ZnFs) and DNA as a cytosolic drug delivery platform. Three kinds of DNA-binding ZnF domains were genetically fused to various proteins with different biological roles, including targeting moiety, molecular probe, and therapeutic cargo. The engineered ZnFs were employed as distinct functional modules, and incorporated into a designed ZnF-binding sequence of a Y-shaped DNA origami (Y-DNA). The resulting functional Y-DNA nanostructures (FYDN) showed self-assembled superstructures with homogeneous morphology, strong resistance to exonuclease activity and multi-modality. We demonstrated the general utility of our approach by showing efficient cytosolic delivery of PTEN tumour suppressor protein to rescue unregulated kinase signaling in cancer cells with negligible nonspecific cytotoxicity.


Assuntos
Proteínas de Ligação a DNA , DNA , Sistemas de Liberação de Medicamentos , Nanoestruturas , Neoplasias , PTEN Fosfo-Hidrolase , Dedos de Zinco , DNA/química , DNA/farmacocinética , DNA/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/farmacocinética , Proteínas de Ligação a DNA/farmacologia , Humanos , Células MCF-7 , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/farmacocinética , PTEN Fosfo-Hidrolase/farmacologia
10.
Biomaterials ; 120: 22-31, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024232

RESUMO

The integration of a targeted delivery with a tumour-selective agent has been considered an ideal platform for achieving high therapeutic efficacy and negligible side effects in cancer therapy. Here, we present engineered protein nanoparticles comprising a tumour-selective oncolytic protein and a targeting moiety as a new format for the targeted cancer therapy. Apoptin from chicken anaemia virus (CAV) was used as a tumour-selective apoptotic protein. An EGFR-specific repebody, which is composed of LRR (Leucine-rich repeat) modules, was employed to play a dual role as a tumour-targeting moiety and a fusion partner for producing apoptin nanoparticles in E. coli, respectively. The repebody was genetically fused to apoptin, and the resulting fusion protein was shown to self-assemble into supramolecular repebody-apoptin nanoparticles with high homogeneity and stability as a soluble form when expressed in E. coli. The repebody-apoptin nanoparticles showed a remarkable anti-tumour activity with negligible side effects in xenograft mice through a cooperative action of the two protein components with distinct functional roles. The repebody-apoptin nanoparticles can be developed as a systemic injectable and tumour-selective therapeutic protein for targeted cancer treatment.


Assuntos
Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/farmacocinética , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Engenharia de Proteínas/métodos , Animais , Antineoplásicos/administração & dosagem , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , Cristalização/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/patologia , Terapia Viral Oncolítica/métodos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Resultado do Tratamento
11.
Theranostics ; 7(10): 2620-2633, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819451

RESUMO

The accurate detection of disease-related biomarkers is crucial for the early diagnosis and management of disease in personalized medicine. Here, we present a molecular imaging of human epidermal growth factor receptor (EGFR)-expressing malignant tumors using an EGFR-specific repebody composed of leucine-rich repeat (LRR) modules. The repebody was labeled with either a fluorescent dye or radioisotope, and used for imaging of EGFR-expressing malignant tumors using an optical method and positron emission tomography. Our approach enabled visualization of the status of EGFR expression, allowing quantitative evaluation in whole tumors, which correlated well with the EGFR expression levels in mouse or patients-derived colon cancers. The present approach can be effectively used for the accurate detection of EGFR-expressing cancers, assisting in the development of a tool for detecting other disease biomarkers.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Receptores ErbB/análise , Imagem Molecular/métodos , Animais , Humanos , Proteínas de Repetições Ricas em Leucina , Camundongos , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA