Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cereb Cortex ; 31(1): 281-300, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32885230

RESUMO

It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL-mPFC/CL-MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.


Assuntos
Potenciais de Ação/fisiologia , Cognição/fisiologia , Condicionamento Clássico/fisiologia , Pálpebras/fisiologia , Animais , Piscadela/fisiologia , Condicionamento Palpebral/fisiologia , Estimulação Elétrica/métodos , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Coelhos
2.
J Neurosci ; 35(44): 14809-21, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538651

RESUMO

We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. SIGNIFICANCE STATEMENT: The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band of 3-12 Hz depending on the conditioned stimulus-unconditioned stimulus intervals (1 s, 500 ms, 250 ms) selected for classical eyeblink conditioning of behaving rabbits. Shorter (50 ms) and longer (2 s) intervals failed to activate the oscillator and prevented the acquisition of conditioned eyelid responses. This is an unexpected mechanism to generate sustained firing activities in neural circuits generating working memories.


Assuntos
Relógios Biológicos/fisiologia , Piscadela/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Masculino , Coelhos , Fatores de Tempo
3.
Cereb Cortex ; 25(9): 2542-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24654258

RESUMO

Although it is generally assumed that the hippocampus is involved in associative learning, the specific contribution of the different synapses present in its intrinsic circuit or comprising its afferents and efferents is poorly defined. We studied here activity-dependent changes in synaptic strength of 9 hippocampal synapses (corresponding to the intrinsic hippocampal circuitry and to its main inputs and outputs) during the acquisition of a trace eyeblink conditioning in behaving mice. The timing and intensity of synaptic changes across the acquisition process was determined. The evolution of these timed changes in synaptic strength indicated that their functional organization did not coincide with their sequential distribution according to anatomical criteria and connectivity. Furthermore, we explored the functional relevance of the extrinsic and intrinsic afferents to CA3 and CA1 pyramidal neurons, and evaluated the distinct input patterns to the intrinsic hippocampal circuit. Results confirm that the acquisition of a classical eyeblink conditioning is a multisynaptic process in which the contribution of each synaptic contact is different in strength, and takes place at different moments across learning. Thus, the precise and timed activation of multiple hippocampal synaptic contacts during classical eyeblink conditioning evokes a specific, dynamic map of functional synaptic states in that circuit.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Piscadela/fisiologia , Condicionamento Clássico , Estimulação Elétrica , Eletromiografia , Potenciais Pós-Sinápticos Excitadores , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estatísticas não Paramétricas , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 109(17): 6710-5, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493252

RESUMO

Transcranial direct-current stimulation (tDCS) is a noninvasive brain stimulation technique that has been successfully applied for modulation of cortical excitability. tDCS is capable of inducing changes in neuronal membrane potentials in a polarity-dependent manner. When tDCS is of sufficient length, synaptically driven after-effects are induced. The mechanisms underlying these after-effects are largely unknown, and there is a compelling need for animal models to test the immediate effects and after-effects induced by tDCS in different cortical areas and evaluate the implications in complex cerebral processes. Here we show in behaving rabbits that tDCS applied over the somatosensory cortex modulates cortical processes consequent to localized stimulation of the whisker pad or of the corresponding area of the ventroposterior medial (VPM) thalamic nucleus. With longer stimulation periods, poststimulation effects were observed in the somatosensory cortex only after cathodal tDCS. Consistent with the polarity-specific effects, the acquisition of classical eyeblink conditioning was potentiated or depressed by the simultaneous application of anodal or cathodal tDCS, respectively, when stimulation of the whisker pad was used as conditioned stimulus, suggesting that tDCS modulates the sensory perception process necessary for associative learning. We also studied the putative mechanisms underlying immediate effects and after-effects of tDCS observed in the somatosensory cortex. Results when pairs of pulses applied to the thalamic VPM nucleus (mediating sensory input) during anodal and cathodal tDCS suggest that tDCS modifies thalamocortical synapses at presynaptic sites. Finally, we show that blocking the activation of adenosine A1 receptors prevents the long-term depression (LTD) evoked in the somatosensory cortex after cathodal tDCS.


Assuntos
Comportamento Animal , Estimulação Elétrica , Aprendizagem , Crânio/fisiologia , Sinapses/fisiologia , Animais , Coelhos , Córtex Somatossensorial/fisiologia
5.
J Neurosci ; 33(6): 2293-304, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392660

RESUMO

Operant conditioning is a type of associative learning involving different and complex sensorimotor and cognitive processes. Because the hippocampus has been related to some motor and cognitive functions involved in this type of learning (such as object recognition, spatial orientation, and associative learning tasks), we decided to study in behaving mice the putative changes in strength taking place at the hippocampal CA3-CA1 synapses during the acquisition and performance of an operant conditioning task. Mice were chronically implanted with stimulating electrodes in the Schaffer collaterals and with recording electrodes in the hippocampal CA1 area and trained to an operant task using a fixed-ratio (1:1) schedule. We recorded the field EPSPs (fEPSPs) evoked at the CA3-CA1 synapse during the performance of appetitive (going to the lever, lever press) and consummatory (going to the feeder, eating) behaviors. In addition, we recorded the local field potential activity of the CA1 area during similar behavioral displays. fEPSPs evoked at the CA3-CA1 synapse presented larger amplitudes for appetitive than for consummatory behaviors. This differential change in synaptic strength took place in relation to the learning process, depending mainly on the moment in which mice reached the selected criterion. Thus, selective changes in CA3-CA1 synaptic strength were dependent on both the behavior display and the learning stage. In addition, significant changes in theta band power peaks and their corresponding discrete frequencies were noticed during these behaviors across the sequence of events characterizing this type of associative learning but not during the acquisition process.


Assuntos
Comportamento Apetitivo/fisiologia , Condicionamento Operante/fisiologia , Comportamento Consumatório/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia
6.
Cerebellum ; 12(5): 738-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23564049

RESUMO

In the present paper, we examine the role of the cerebellar interpositus nucleus (IN) in motor and non-motor domains. Recent findings are considered, and we share the following conclusions: IN as part of the olivo-cortico-nuclear microcircuit is involved in providing powerful timing signals important in coordinating limb movements; IN could participate in the timing and performance of ongoing conditioned responses rather than the generation and/or initiation of such responses; IN is involved in the control of reflexive and voluntary movements in a task- and effector system-dependent fashion, including hand movements and associated upper limb adjustments, for quick effective actions; IN develops internal models for dynamic interactions of the motor system with the external environment for anticipatory control of movement; and IN plays a significant role in the modulation of autonomic and emotional functions.


Assuntos
Núcleos Cerebelares/fisiologia , Córtex Cerebral/fisiologia , Emoções/fisiologia , Movimento/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos
7.
Cerebellum ; 10(4): 702-10, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21181461

RESUMO

Understanding the role played by the cerebellum in the genesis and control of learned motor responses requires a precise knowledge of interdependent relationships between kinetic neural commands and the performance (kinematics) of the acquired movements. The eyelid motor system is a useful model for studying how simple motor responses are generated and performed. Here, we recorded the activity of interpositus, red nucleus, and/or facial motor neurons during classical eyeblink conditioning, using a delay paradigm. Experiments were carried out in behaving cats, and in conscious wild-type and (Purkinje cell devoid) Lurcher mice. Kinetic variables were determined by recording the firing activities of identified neurons at the mentioned nuclei, whilst kinematic variables were selected from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded during the conditioned-stimulus/unconditioned-stimulus interval. Whereas motoneurons encoded eyelid kinematics for acquired eyelid responses, interpositus, and red nucleus neurons did not directly encode eyelid performance, and the dynamic association between their neuronal activities was barely significant (from moderate to weak correlation, nonlinear coupling with high asymmetry, and neural firing activities that always lagged the beginning of the conditioned response). Nevertheless, interpositus and red nucleus neurons seem to play a modulating role in the dynamic control of this type of learned motor response, and present interesting adaptive properties in Lurcher mice. The analytical procedures proposed here could be very helpful in defining the functional state corresponding to each stage across the acquisition of new motor and cognitive abilities.


Assuntos
Núcleos Cerebelares/fisiologia , Aprendizagem/fisiologia , Neurônios Motores/fisiologia , Núcleo Rubro/fisiologia , Animais , Gatos , Condicionamento Palpebral/fisiologia , Estimulação Elétrica/métodos , Camundongos , Camundongos Mutantes Neurológicos , Vias Neurais/fisiologia
8.
Sci Rep ; 11(1): 2970, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536607

RESUMO

Altered functioning of GABAergic interneurons expressing parvalbumin (PV) in the basal ganglia-thalamo-cortical circuit are likely to be involved in several human psychiatric disorders characterized by deficits in attention and sensory gating with dysfunctional decision-making behavior. However, the contribution of these interneurons in the ability to acquire demanding learning tasks remains unclear. Here, we combine an operant conditioning task with local field potentials simultaneously recorded in several nuclei involved in reward circuits of wild-type (WT) and PV-deficient (PVKO) mice, which are characterized by changes in firing activity of PV-expressing interneurons. In comparison with WT mice, PVKO animals presented significant deficits in the acquisition of the selected learning task. Recordings from prefrontal cortex, nucleus accumbens (NAc) and hippocampus showed significant decreases of the spectral power in beta and gamma bands in PVKO compared with WT mice particularly during the performance of the operant conditioning task. From the first to the last session, at all frequency bands the spectral power in NAc tended to increase in WT and to decrease in PVKO. Results indicate that PV deficiency impairs signaling necessary for instrumental learning and the recognition of natural rewards.


Assuntos
Condicionamento Operante/fisiologia , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Parvalbuminas/deficiência , Animais , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Parvalbuminas/genética , Recompensa , Filtro Sensorial/fisiologia
9.
J Neurosci ; 29(34): 10750-63, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19710326

RESUMO

We assessed here true causal directionalities in cerebellar-motoneuron (MN) network associations during the classical conditioning of eyelid responses. For this, the firing activities of identified facial MNs and cerebellar interpositus (IP) nucleus neurons were recorded during the acquisition of this type of associative learning in alert behaving cats. Simultaneously, the eyelid conditioned response (CR) and the EMG activity of the orbicularis oculi (OO) muscle were recorded. Nonlinear association analysis and time-dependent causality method allowed us to determine the asymmetry, time delays, direction in coupling, and functional interdependences between neuronal recordings and learned motor responses. We concluded that the functional nonlinear association between the IP neurons and OO muscle activities was bidirectional and asymmetric, and the time delays in the two directions of coupling always lagged the start of the CR. Additionally, the strength of coupling depended inversely on the level of expression of eyeblink CRs, whereas causal inferences were significantly dependent on the phase information status. In contrast, the functional association between OO MNs and OO muscle activities was unidirectional and quasisymmetric, and the time delays in coupling were always of opposed signs. Moreover, information transfer in cerebellar-MN network associations during the learning process required a "driving common source" that induced the mere "modulating coupling" of the IP nucleus with the final common pathway for the eyelid motor system. Thus, it can be proposed that the cerebellum is always looking back and reevaluating its own function, using the information acquired in the process, to play a modulating-reinforcing role in motor learning.


Assuntos
Cerebelo/citologia , Aprendizagem/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Dinâmica não Linear , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Gatos , Condicionamento Palpebral/fisiologia , Estimulação Elétrica , Eletromiografia , Feminino , Músculo Esquelético/fisiologia , Vias Neurais/fisiologia , Fatores de Tempo
10.
J Neurophysiol ; 104(1): 346-65, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20410355

RESUMO

Young adult heterozygous Lurcher mice constitute an excellent model for studying the role of the cerebellar cortex in motor performance-including the acquisition of new motor abilities-because of the early postnatal degeneration of almost all of their Purkinje and granular cells. Wild-type and Lurcher mice were classically conditioned for eyelid responses using a delay paradigm with or without an electrolytic lesion in the interpositus nucleus. Although the late component of electrically evoked blink reflexes was smaller in amplitude and had a longer latency in Lurcher mice than that in controls, the two groups of animals presented similar acquisition curves for eyeblink conditioning. The lesion of the interpositus nucleus affected both groups of animals equally for the generation of reflex and conditioned eyelid responses. Furthermore, we recorded the multiunitary activity at the red and interpositus nuclei during the same type of associative learning. In both nuclei, the neural firing activity lagged the beginning of the conditioned response (determined by orbicularis oculi muscle response). Although red nucleus neurons and muscle activities presented a clear functional coupling (strong correlation and low asymmetry) across conditioning, the coupling between interpositus neurons and either red nucleus neurons or muscle activities was slightly significant (weak correlation and high asymmetry). Lurcher mice presented a nonlinear coupling (high asymmetry) between red nucleus neurons and muscle activities, with an evident compensatory adjustment in the correlation of firing between interpositus and red nuclei neurons (a coupling with low asymmetry), aimed probably at compensating the absence of cerebellar cortical neurons.


Assuntos
Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Cerebelo/patologia , Degenerações Espinocerebelares/psicologia , Algoritmos , Animais , Piscadela/fisiologia , Mapeamento Encefálico , Condicionamento Palpebral/fisiologia , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Eletromiografia , Fenômenos Eletrofisiológicos , Imuno-Histoquímica , Camundongos , Camundongos Mutantes Neurológicos , Dinâmica não Linear , Músculos Oculomotores/fisiologia , Núcleo Rubro/fisiologia , Degenerações Espinocerebelares/patologia
11.
Prog Neurobiol ; 183: 101692, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31521703

RESUMO

The objective of this study was to identify the functional properties of the prefrontal cortex that allow animals to work together to obtain a mutual reward. We induced pairs of male rats to develop a cooperative behavior in two adjacent Skinner boxes divided by a metallic grille. The experimental boxes allowed the two rats to see and to smell each other and to have limited physical contact through the grille. Rats were progressively trained to climb onto two separate platforms (and stay there simultaneously for >0.5 s) to get food pellets for both. This set-up was compatible with the in vivo recording of local field potentials (LFPs) at the prelimbic (PrL) cortex throughout the task. A dominant delta/theta activity appeared mostly during the period in which rats were located on the platforms. Spectral powers were larger when rats had to stay together on the platforms than when they jumped individually onto them. When paired together, rats presented significant differences in the power of delta and low theta bands depending if they were leading or following the joint activity. PrL cortex encodes neural commands related to the individual and joint acquisition of an operant conditioning task by behaving rats.


Assuntos
Comportamento Animal/fisiologia , Condicionamento Operante/fisiologia , Comportamento Cooperativo , Ritmo Delta/fisiologia , Giro do Cíngulo/fisiologia , Córtex Pré-Frontal/fisiologia , Ritmo Teta/fisiologia , Animais , Masculino , Ratos , Recompensa
12.
Mol Neurobiol ; 56(6): 4440-4454, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30334186

RESUMO

The development of inhibitory circuits depends on the action of a network of transcription factors and epigenetic regulators that are critical for interneuron specification and differentiation. Although the identity of many of these transcription factors is well established, much less is known about the specific contribution of the chromatin-modifying enzymes that sculpt the interneuron epigenome. Here, we generated a mouse model in which the lysine acetyltransferase CBP is specifically removed from neural progenitors at the median ganglionic eminence (MGE), the structure where the most abundant types of cortical interneurons are born. Ablation of CBP interfered with the development of MGE-derived interneurons in both sexes, causing a reduction in the number of functionally mature interneurons in the adult forebrain. Genetic fate mapping experiments not only demonstrated that CBP ablation impacts on different interneuron classes, but also unveiled a compensatory increment of interneurons that escaped recombination and cushion the excitatory-inhibitory imbalance. Consistent with having a reduced number of interneurons, CBP-deficient mice exhibited a high incidence of spontaneous epileptic seizures, and alterations in brain rhythms and enhanced low gamma activity during status epilepticus. These perturbations led to abnormal behavior including hyperlocomotion, increased anxiety and cognitive impairments. Overall, our study demonstrates that CBP is essential for interneuron development and the proper functioning of inhibitory circuitry in vivo.


Assuntos
Diferenciação Celular/genética , Epigênese Genética , Interneurônios/citologia , Eminência Mediana/citologia , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Potenciais de Ação , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Comportamento Animal , Mapeamento Cromossômico , Transtornos Cognitivos/complicações , Transtornos Cognitivos/fisiopatologia , Epilepsia/complicações , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Hipocampo/metabolismo , Interneurônios/metabolismo , Ácido Caínico , Aprendizagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo
13.
J Neurosci ; 27(25): 6620-32, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17581949

RESUMO

The role played by the cerebellum in movement control requires knowledge of interdependent relationships between kinetic neural commands and the performance (kinematics) of learned motor responses. The eyelid motor system is an excellent model for studying how simple motor responses are elaborated and performed. Kinetic variables (n = 24) were determined here by recording the firing activities of orbicularis oculi motoneurons and cerebellar interpositus neurons in alert cats during classical conditioning, using a delay paradigm. Kinematic variables (n = 36) were selected from eyelid position, velocity, and acceleration traces recorded during the conditioned stimulus-unconditioned stimulus interval. Optimized experimental and analytical tools allowed us to determine the evolution of kinetic and kinematic variables, the dynamic correlation functions relating motoneuron and interpositus neuron firing to eyelid conditioning responses, the falling correlation property of the interpositus nucleus across the successive training sessions, the time and significance of the linear relationships between these variables, and finally, the phase-inversion property of interpositus neurons with respect to acquired conditioned responses. Whereas motoneurons encoded eyelid kinematics at every instant of the dynamic correlation range and generated the natural oscillatory properties of the neuromuscular elements involved in eyeblinks, interpositus neurons did not directly encode eyelid performance: namely, their contribution was only slightly significant in the dynamic correlation range, and this regularity caused the integrated neuronal activity to oscillate by progressively inverting phase information. Therefore, interpositus neurons seem to play a modulating role in the dynamic control of learned motor responses, i.e., they could be considered a neuronal phase-modulating device.


Assuntos
Núcleos Cerebelares/fisiologia , Aprendizagem/fisiologia , Neurônios Motores/fisiologia , Potenciais de Ação/fisiologia , Animais , Gatos , Condicionamento Palpebral/fisiologia
14.
Sci Rep ; 6: 37650, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869181

RESUMO

Proper performance of acquired abilities can be disturbed by the unexpected occurrence of external changes. Rats trained with an operant conditioning task (to press a lever in order to obtain a food pellet) using a fixed-ratio (1:1) schedule were subsequently placed in a Skinner box in which the lever could be removed randomly. Field postsynaptic potentials (fPSPs) were chronically evoked in perforant pathway-hippocampal CA1 (PP-CA1), CA1-subiculum (CA1-SUB), CA1-medial prefrontal cortex (CA1-mPFC), mPFC-nucleus accumbens (mPFC-NAc), and mPFC-basolateral amygdala (mPFC-BLA) synapses during lever IN and lever OUT situations. While lever presses were accompanied by a significant increase in fPSP slopes at the five synapses, the unpredictable absence of the lever were accompanied by decreased fPSP slopes in all, except PP-CA1 synapses. Spectral analysis of local field potentials (LFPs) recorded when the animal approached the corresponding area in the lever OUT situation presented lower spectral powers than during lever IN occasions for all recording sites, apart from CA1. Thus, the unpredictable availability of a reward-related cue modified the activity of cortical and subcortical areas related with the acquisition of operant learning tasks, suggesting an immediate functional reorganization of these neural circuits to address the changed situation and to modify ongoing behaviors accordingly.


Assuntos
Córtex Cerebral/fisiologia , Sinais (Psicologia) , Rede Nervosa/fisiologia , Recompensa , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Condicionamento Psicológico , Implantes Experimentais , Masculino , Probabilidade , Ratos Wistar , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia , Análise e Desempenho de Tarefas
15.
PLoS One ; 11(2): e0148800, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848590

RESUMO

GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the central nervous system. Pharmacological activation of GABAB receptors regulates neurotransmission and neuronal excitability at pre- and postsynaptic sites. Electrophysiological activation of GABAB receptors in brain slices generally requires strong stimulus intensities. This raises the question as to whether behavioral stimuli are strong enough to activate GABAB receptors. Here we show that GABAB1a-/- mice, which constitutively lack presynaptic GABAB receptors at glutamatergic synapses, are impaired in their ability to acquire an operant learning task. In vivo recordings during the operant conditioning reveal a deficit in learning-dependent increases in synaptic strength at CA3-CA1 synapses. Moreover, GABAB1a-/- mice fail to synchronize neuronal activity in the CA1 area during the acquisition process. Our results support that activation of presynaptic hippocampal GABAB receptors is important for acquisition of a learning task and for learning-associated synaptic changes and network dynamics.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/metabolismo , Receptores de GABA-B/metabolismo , Receptores Pré-Sinápticos/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Condicionamento Operante , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Plasticidade Neuronal , Células Piramidais/fisiologia , Potenciais Sinápticos
16.
Brain Stimul ; 6(1): 25-39, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22420944

RESUMO

Although it is well-admitted that transcranial Direct Current Stimulation (tDCS) allows for interacting with brain endogenous rhythms, the exact mechanisms by which externally-applied fields modulate the activity of neurons remain elusive. In this study a novel computational model (a neural mass model including subpopulations of pyramidal cells and inhibitory interneurons mediating synaptic currents with either slow or fast kinetics) of the cerebral cortex was elaborated to investigate the local effects of tDCS on neuronal populations based on an in-vivo experimental study. Model parameters were adjusted to reproduce evoked potentials (EPs) recorded from the somatosensory cortex of the rabbit in response to air-puffs applied on the whiskers. EPs were simulated under control condition (no tDCS) as well as under anodal and cathodal tDCS fields. Results first revealed that a feed-forward inhibition mechanism must be included in the model for accurate simulation of actual EPs (peaks and latencies). Interestingly, results revealed that externally-applied fields are also likely to affect interneurons. Indeed, when interneurons get polarized then the characteristics of simulated EPs become closer to those of real EPs. In particular, under anodal tDCS condition, more realistic EPs could be obtained when pyramidal cells were depolarized and, simultaneously, slow (resp. fast) interneurons became de- (resp. hyper-) polarized. Geometrical characteristics of interneurons might provide some explanations for this effect.


Assuntos
Simulação por Computador , Potenciais Evocados/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Estimulação Magnética Transcraniana , Animais , Masculino , Coelhos
17.
Front Neuroanat ; 6: 8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22435053

RESUMO

The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation-deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi (OO) muscle (via the red nucleus to the facial motor nucleus) is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area). We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (IPn) (types A and B), the electromyographic (EMG) activity of the OO muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist-antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic-kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements-i.e., during the active contraction of the OO muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area-i.e., more or less directly onto levator palpebrae motoneurons-is highly appealing.

18.
Artigo em Inglês | MEDLINE | ID: mdl-21941469

RESUMO

The cerebellum-red nucleus-facial motoneuron (Mn) pathway has been reported as being involved in the proper timing of classically conditioned eyelid responses. This special type of associative learning serves as a model of event timing for studying the role of the cerebellum in dynamic motor control. Here, we have re-analyzed the firing activities of cerebellar posterior interpositus (IP) neurons and orbicularis oculi (OO) Mns in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. The aim was to revisit the hypothesis that the IP neurons (IPns) can be considered a neuronal phase-modulating device supporting OO Mns firing with an emergent timing mechanism and an explicit correlation code during learned eyelid movements. Optimized experimental and computational tools allowed us to determine the different causal relationships (temporal order and correlation code) during and between trials. These intra- and inter-trial timing strategies expanding from sub-second range (millisecond timing) to longer-lasting ranges (interval timing) expanded the functional domain of cerebellar timing beyond motor control. Interestingly, the results supported the above-mentioned hypothesis. The causal inferences were influenced by the precise motor and pre-motor spike timing in the cause-effect interval, and, in addition, the timing of the learned responses depended on cerebellar-Mn network causality. Furthermore, the timing of CRs depended upon the probability of simulated causal conditions in the cause-effect interval and not the mere duration of the inter-stimulus interval. In this work, the close relation between timing and causality was verified. It could thus be concluded that the firing activities of IPns may be related more to the proper performance of ongoing CRs (i.e., the proper timing as a consequence of the pertinent causality) than to their generation and/or initiation.

19.
Eur J Neurosci ; 20(7): 1945-52, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15380017

RESUMO

Transgenic mice over-expressing a mutated form of the human amyloid precursor protein (APP, 695 isoform) bearing a mutation associated with Alzheimer's disease (V642I, so-called London mutation, hereafter APPLd2) and wild-type controls were studied at age periods (3 and 10 months) prior to the overt development of neuritic amyloid plaques. Both 3- and 10-month-old APPLd2 mice had reflex eyelid responses like those of controls, but only younger mice were able to acquire a classical conditioning of eyelid responses in a trace paradigm. In vitro studies on hippocampal slices showed that 10-month-old APPLd2 mice also presented deficits in paired-pulse facilitation and long-term potentiation, but presented a normal synaptic activation of CA1 pyramidal cells by the stimulation of Schaffer collaterals. It is proposed that definite functional changes may appear well in advance of noticeable structural alterations in this animal model of Alzheimer's disease, and that specific learning tasks could have a relevant diagnostic value.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Aprendizagem por Associação/fisiologia , Animais , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Potenciais Evocados , Pálpebras/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA