Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641564

RESUMO

Here we present the synthesis, structure and magnetic properties of complexes of general formula (Mn)(Me2NH2)4][Mn3(µ-L)6(H2O)6] and (Me2NH2)6[M3(µ-L)6(H2O)6] (M = CoII, NiII and CuII); L-2 = 4-(1,2,4-triazol-4-yl) ethanedisulfonate). The trinuclear polyanions were isolated as dimethylammonium salts, and their crystal structures determined by single crystal and powder X-ray diffraction data. The polyanionic part of these salts have the same molecular structure, which consists of a linear array of metal(II) ions linked by triple N1-N2-triazole bridges. In turn, the composition and crystal packing of the MnII salt differs from the rest of the complexes (with six dimethyl ammonia as countercations) in containing one Mn+2 and four dimethyl ammonia as countercations. Magnetic data indicate dominant intramolecular antiferromagnetic interactions stabilizing a paramagnetic ground state. Susceptibility data have been successfully modeled with a simple isotropic Hamiltonian for a centrosymmetric linear trimer, H = -2J (S1S2 + S2S3) with super-exchange parameters J = -0.4 K for MnII, -7.5 K for NiII and -45 K for CuII complex. The magnetic properties of these complexes and their easy processing opens unique possibilities for their incorporation as magnetic molecular probes into such hybrid materials as magnetic/conducting multifunctional materials or as dopant for organic conducting polymers.

2.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443343

RESUMO

Energy production and consumption without the use of fossil fuels are amongst the biggest challenges currently facing humankind and the scientific community. Huge efforts have been invested in creating technologies that enable closed carbon or carbon neutral fuel cycles, limiting CO2 emissions into the atmosphere. Formic acid/formate (FA) has attracted intense interest as a liquid fuel over the last half century, giving rise to a plethora of studies on catalysts for its efficient electrocatalytic oxidation for usage in fuel cells. However, new catalysts and catalytic systems are often difficult to compare because of the variability in conditions and catalyst parameters examined. In this review, we discuss the extensive literature on FA electrooxidation using platinum, palladium and non-platinum group metal-based catalysts, the conditions typically employed in formate electrooxidation and the main electrochemical parameters for the comparison of anodic electrocatalysts to be applied in a FA fuel cell. We focused on the electrocatalytic performance in terms of onset potential and peak current density obtained during cyclic voltammetry measurements and on catalyst stability. Moreover, we handpicked a list of the most relevant examples that can be used for benchmarking and referencing future developments in the field.

3.
Phys Chem Chem Phys ; 20(40): 25738-25745, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30281047

RESUMO

Two monomers, M:OO and M:ON, and their corresponding polymers, P:OO and P:ON, were prepared from styrene derivatives N,N-diphenyl-4-vinyl-aniline with different substituents (-OCH3 and -N(CH3)2) in the N-phenyl para positions. The polymers were synthesised and fully characterised to study their function as hole transport materials (HTMs) in perovskite solar cells (PSCs). The thermal, optical and electrochemical properties and performance of these monomers and polymers as HTMs in PSCs were compared in terms of their structure. The polymers form more stable amorphous glassy states and showed higher thermal stability than the monomers. The different substituent in the para position influenced the highest occupied molecular orbital (HOMO) level, altering the oxidation potential. Both monomers and polymers were employed as HTMs in perovskite solar cells with a device configuration FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/HTM/Au resulting in power conversion efficiencies of 7.48% for M:OO, 5.14% for P:OO, 5.28% for P:ON and 3.52% for M:ON. Although showing comparatively low efficiencies, the polymers showed much superior reproducibility in comparison with Spiro-OMeTAD or the monomers, suggesting further optimisation of polymeric HTMs with redox side groups is warranted.

4.
Phys Chem Chem Phys ; 20(46): 29567, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30451269

RESUMO

Correction for 'Polymeric hole-transport materials with side-chain redox-active groups for perovskite solar cells with good reproducibility' by Rosinda Fuentes Pineda et al., Phys. Chem. Chem. Phys., 2018, 20, 25738-25745.

5.
Proc Natl Acad Sci U S A ; 111(26): 9390-5, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979805

RESUMO

Multicomponent self-assembly, wherein two unique donor precursors are combined with a single metal acceptor instead of the more common two-component assembly, can be achieved by selecting Lewis-basic sites and metal nodes that select for heteroligated coordination spheres. Platinum(II) ions show a thermodynamic preference for mixed pyridyl/carboxylate coordination environments and are thus suitable for such designs. The use of three or more unique building blocks increases the structural complexity of supramolecules. Herein, we describe the synthesis and characterization of rectangular prismatic supramolecular coordination complexes (SCCs) with two faces occupied by porphyrin molecules, motivated by the search for new multichromophore complexes with promising light-harvesting properties. These prisms are obtained from the self-assembly of a 90° Pt(II) acceptor with a meso-substituted tetrapyridylporphyrin (TPyP) and dicarboxylate ligands. The generality of this self-assembly reaction is demonstrated using five dicarboxylate ligands, two based on a rigid central phenyl ring and three alkyl-spaced variants, to form a total of five free-base and five Zn-metallated porphyrin prisms. All 10 SCCs are characterized by (31)P and (1)H multinuclear NMR spectroscopy and electrospray ionization mass spectrometry, confirming the structure of each self-assembly and the stoichiometry of formation. The photophysical properties of the resulting SCCs were investigated revealing that the absorption and emission properties of the free-base and metallated porphyrin prisms preserve the spectral features associated with free TPyP.


Assuntos
Biomimética/métodos , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Porfirinas/química , Engenharia de Proteínas/métodos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Platina/química , Termodinâmica , Zinco/química
6.
Angew Chem Int Ed Engl ; 54(28): 8208-12, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26014846

RESUMO

In this paper we report on the influence of light and oxygen on the stability of CH3 NH3 PbI3 perovskite-based photoactive layers. When exposed to both light and dry air the mp-Al2 O3 /CH3 NH3 PbI3 photoactive layers rapidly decompose yielding methylamine, PbI2 , and I2 as products. We show that this degradation is initiated by the reaction of superoxide (O2 (-) ) with the methylammonium moiety of the perovskite absorber. Fluorescent molecular probe studies indicate that the O2 (-) species is generated by the reaction of photoexcited electrons in the perovskite and molecular oxygen. We show that the yield of O2 (-) generation is significantly reduced when the mp-Al2 O3 film is replaced with an mp-TiO2 electron extraction and transport layer. The present findings suggest that replacing the methylammonium component in CH3 NH3 PbI3 to a species without acid protons could improve tolerance to oxygen and enhance stability.

7.
J Am Chem Soc ; 135(28): 10503-11, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23763242

RESUMO

Four new subphthalocyanine-based capsules have been synthesized and characterized. These supramolecular systems have been successfully employed for the encapsulation of fullerenes and probed by a wide range of characterization methods, including NMR, UV-vis and fluorescence spectroscopy, electrospray ionization mass spectrometry, and electrochemistry. Furthermore, the binding constants of the host guest complexes were estimated. Finally, the photophysical properties revealed that the subphthalocyanines undergo a transduction of singlet excited-state energy to the fullerene inside the cavity upon photoexcitation.


Assuntos
Indóis/química , Compostos Organometálicos/química , Isoindóis , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos
8.
J Phys Chem Lett ; 12(43): 10479-10485, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34677055

RESUMO

In recent years, several examples of materials combining the molecular bistability of spin crossover (SC) and fluorescent moieties have flourished in the literature. Fluorescence is a sensitive probe, and SC may provide modulation of the signal, thus affording systems in which physicochemical changes in the environment of the SC centers could be effectively detected. On the contrary, organic semiconductor polymers are of great interest and, furthermore, have been successfully applied in different optoelectronic devices, such as transistors, solar cells, and light-emitting devices. Herein, we report on the fabrication of composites comprising a fluorescent, organic semiconductor polymer (polyfluorene) and a spin crossover compound, an Fe(II)-triazole coordination polymer. A strong synergy was observed between the spin transition of the Fe(II) compound and variations in the fluorescence of the organic polymer. The fluorescence modulation was shown to be reversible, with an increase of ≤20% with respect to the original value.

9.
Nat Commun ; 8: 15218, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492235

RESUMO

Methylammonium lead halide perovskites are attracting intense interest as promising materials for next-generation solar cells, but serious issues related to long-term stability need to be addressed. Perovskite films based on CH3NH3PbI3 undergo rapid degradation when exposed to oxygen and light. Here, we report mechanistic insights into this oxygen-induced photodegradation from a range of experimental and computational techniques. We find fast oxygen diffusion into CH3NH3PbI3 films is accompanied by photo-induced formation of highly reactive superoxide species. Perovskite films composed of small crystallites show higher yields of superoxide and lower stability. Ab initio simulations indicate that iodide vacancies are the preferred sites in mediating the photo-induced formation of superoxide species from oxygen. Thin-film passivation with iodide salts is shown to enhance film and device stability. The understanding of degradation phenomena gained from this study is important for the future design and optimization of stable perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA