Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853333

RESUMO

In Mexico, there are 29 native species of the genus Hymenocallis, where H. glauca is one of the most cultivated bulbous plants. It holds economic importance as it is commercialized as a potted plant and cut flower (Leszczyñska and Borys, 2001). In October 2023, field sampling was conducted in the Research Center in Horticulture and Native Plants (18°55'55" N, 98°24'02.8"W) of UPAEP University. H. glauca diseased plants were found in an area of 0.4 ha, with an incidence of 35% and an estimated severity of 45% on infected plants in vegetative stage. The symptoms included chlorosis of foliage, necrosis at the base of the stem, and soft rot with abundant white to gray mycelium and abundant production of black, irregular sclerotia of approximately 3.5 mm diameter. Finally, the plants wilted and died. The fungus was isolated from 40 symptomatic plants. Sclerotia were collected, disinfested with 3% NaOCl for one minute, rinsed with sterile distilled water (SDW), and plated on Petri dishes containing potato dextrose agar (PDA) with sterile forceps. Subsequently, a sterile dissecting needle was used to place fragments of mycelium directly on Petri dishes with PDA. Plates were incubated at 23 °C in dark for 7 days. One isolate was obtained from each diseased plant by the hyphal-tip method (20 isolates from sclerotia and 20 from mycelium). After 7 days, colonies had fast-growing, dense, and cottony-white aerial mycelium forming irregular sclerotia of 3.57 ± 0.59 mm (mean ± standard deviation, n=100). In each Petri dish there were produced 21.5 ± 7.9 sclerotia (mean ± standard deviation, n=40), after 11 days; these were initially white and gradually turned black. The isolates were tentatively identified as Sclerotinia sclerotiorum based on morphological characteristics (Saharan and Mehta 2008). Two representative isolates were chosen for molecular identification and genomic DNA was extracted by the CTAB protocol. The ITS region and the glyceraldehyde 3-phosphate dehydrogenase (G3PDH) gene were amplified and sequenced (Staats et al. 2005; White et al. 1990). The sequences of a representative isolate (SsHg3) were deposited in GenBank (ITS- PP094578; G3PDH- PP101843). BLAST analysis of the partial sequences ITS (519 bp), and G3PDH (950 bp) showed 100% similarity to S. sclerotiorum isolates (GenBank: MG249967, MW082601). Pathogenicity was confirmed by inoculating 30 H. glauca plants in vegetative stage grown in pots with sterile soil. Ten sclerotia were deposited at the base of the stem, 10 mm below the soil surface. As control treatment, SDW was applied to 10 plants. The plants were placed in a greenhouse at 23 °C and 90% relative humidity. After 17 days, all inoculated plants displayed symptoms similar to those observed in the field, while no symptoms were observed on the controls. The fungus was re-isolated from the inoculated plants as described above, fulfilling Koch's postulates. The pathogenicity tests were repeated three times. S. sclerotiorum has been reported causing white mold on other bulbous plants, like fennel (Foeniculum vulgare) in Korea (Choi et al. 2015). To our knowledge, this is the first report of S. sclerotiorum causing white mold on H. glauca in Mexico. Information about diseases affecting this plant is very limited, so this research is essential for developing integrated management strategies and preventing spread to other production areas.

2.
Plant Dis ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422435

RESUMO

The dragon fruit is native of Mexico, and Puebla is the third-largest producing state (SIAP 2023). In June 2023, field sampling was conducted in El Paraíso, Atlixco (18° 49' 5.275" N, 98° 26' 52.353" W), Puebla, Mexico. The mean temperature and relative humidity were 20 °C and 75% for seven consecutive days. Dragon fruits cv. 'Delight' close to harvest with gray mold symptoms were found in a commercial area of 2 ha, with an incidence of 35 to 40% and an estimated severity of 75% on infected fruit. The symptoms included necrosis at the apex, which later spread throughout the fruit, along with a soft, black rot covered in abundant mycelium and sporulation. The fungus was isolated from 40 symptomatic fruits by disinfesting pieces of necrotic tissue with 3% NaClO for one minute, rinsing with sterile distilled water (SDW), plating on Petri dishes with potato dextrose agar, and incubating at 25 °C in the dark. One isolate was obtained from each diseased fruit by the hyphal-tip method. The colonies were initially white with a growth rate of 1.15-1.32 cm per day and turned gray after 10 days; the mycelium was dense and aerial. Spherical and irregular sclerotia were formed, measuring 0.9-1.4 × 0.6-1.1 mm (n = 100). Each Petri dish produced 56-278 sclerotia (n = 40) after 11 days; these were initially white and gradually turned dark brown. Brown to olive conidiophores were straight, septate, and branched, measuring 1075-1520 × 10-21 µm, with elliptical hyaline to light brown conidia of 6.6-11.5 × 5-8.1 µm (n=100). The isolates were tentatively identified as Botrytis cinerea based on morphological characteristics (Ellis 1971). Two representative isolates were chosen for molecular identification and genomic DNA was extracted by the CTAB protocol. The ITS region and the heat shock protein (HSP60), RNA polymerase binding II (RPB2) and glyceraldehyde 3-phosphate dehydrogenase (G3PDH) genes were sequenced (White et al. 1990; Staats et al. 2005). The sequences of a representative isolate (BcPh5) were deposited in GenBank (ITS-OR582337; HSP60-OR636622; RPB2-OR636623; and G3PDH-OR636621). BLAST analysis of the partial sequences of ITS (479 bp), HSP60 (1006 bp), RPB2 (1126 bp), and G3PDH (907 bp) showed 100% similarity to B. cinerea isolates (GenBank: KM840848, MH796663, MK919495, MF480679). Phylogenetic analysis confirmed that BcPh5 clustered with B. cinerea strains. Pathogenicity was confirmed by inoculating the non-wounded surface of 20 detached dragon fruits cv. 'Delight' using the BcPh5 isolate by depositing 20 µl of a 105 conidia/ml suspension with a sterile syringe. The fruits were placed on the rim of a plastic container and inserted in a moisture box with 2 cm of water at the bottom. The box was covered with a plastic sheet to maintain humidity. Control fruits were inoculated with SDW. The inoculated fruits became covered with abundant white to gray mycelium, and soft rot developed within eight days, while no symptoms were observed on the controls. The fungus was re-isolated from the inoculated fruits as described above, fulfilling Koch's postulates. The pathogenicity tests were repeated three times. Gray mold caused by B. cinerea was also recently reported in Mexico on pomegranate (Hernández et al. 2023) and rose apple (Isodoro et al. 2023). As far as we know, this is the first report of B. cinerea causing gray mold on dragon fruit in Mexico. This research is essential for designing integrated management strategies against gray mold on dragon fruits.

3.
Plant Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568786

RESUMO

Echeveria gigantea, native of Mexico (Reyes et al. 2011), holds economic importance as it is marketed as a potted plant and cut flower due to its drought-tolerant capabilities and aesthetic appeal. In September 2023, a field sampling was conducted at the Research Center in Horticulture and Native Plants (18°55'56.6" N, 98°24'01.5" W) of UPAEP University. Echeveria gigantea cv. Quilpalli plants with white mold symptoms were found in an area of 0.5 ha, with an incidence of 40% and severity of 50% on severely affected stems. The symptoms included chlorosis of older foliage, necrosis at the base of the stem, and soft rot with abundant white to gray mycelium and abundant production of irregular sclerotia resulting in wilted plants. The fungus was isolated from 30 symptomatic plants. Sclerotia were collected, sterilized in 3% NaOCl, rinsed with sterile distilled water (SDW), and plated on Potato Dextrose Agar (PDA) with sterile forceps. Subsequently, a dissecting needle was used to place fragments of mycelium directly on PDA. Plates were incubated at 23 °C in darkness. A total of 30 isolates were obtained using the hyphal-tip method, one from each diseased plant (15 isolates from sclerotia and 15 from mycelium). After 6 days, colonies had fast-growing, dense, cottony-white aerial mycelium forming irregular sclerotia of 3.67 ± 1.13 mm (n=100). Each Petri dish produced 32.47 ± 7.5 sclerotia (n=30), after 12 days. The sclerotia were initially white and gradually turned black. The isolates were tentatively identified as Sclerotinia sclerotiorum based on morphological characteristics (Saharan and Mehta 2008). Two isolates were selected for molecular identification. Genomic DNA was extracted using the CTAB protocol. The ITS region and the glyceraldehyde 3-phosphate dehydrogenase (G3PDH) gene were sequenced for two randomly selected isolates (White et al. 1990; Staats et al. 2005). The ITS and G3PDH sequences of the SsEg9 isolate were deposited in GenBank (ITS-OR816006; G3PDH-OR879212). BLAST analysis of the partial ITS (510 bp) and G3PDH (915 bp) sequences showed 100% and 99.78% similarity to S. sclerotiorum isolates (GenBank: MT101751 and MW082601). Pathogenicity was confirmed by inoculating 30 120-day-old E. gigantea cv. Quilpalli plants grown in pots with sterile soil. Ten sclerotia were deposited at the base of the stem, 10 mm below the soil surface. As control treatment, SDW was applied to 10 plants. The plants were placed in a greenhouse at 23 °C and 90% relative humidity. After 16 days, all inoculated plants displayed symptoms similar to those observed in the field. Control plants did not display any symptoms. The fungus was reisolated from the inoculated stems, fulfilling Koch's postulates. The pathogenicity tests were repeated three times. Recently S. sclerotiorum has been reported causing white mold on cabbage in the state of Puebla, Mexico (Terrones-Salgado et al. 2023). To the best of our knowledge, this is the first report of S. sclerotiorum causing white mold on E. gigantea in Mexico. Information about diseases affecting this plant is very limited, so this research is crucial for designing integrated management strategies and preventing spread to other production areas.

4.
Plant Dis ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884482

RESUMO

The state of Puebla is the main producer of cabbage (Brassica oleracea var. capitata) in Mexico, with an area of approximately 1,858 ha (SIAP 2023). In April 2023, a field sampling was conducted in the San Luis Ajajalpan, Tecali de Herrera (18°55.57'N, 97°55.607'W), Puebla, Mexico. The average temperature was 24°C and the relative humidity was 95% for five consecutive days. Cabbage plants cv. 'American Taki San Juan' close to harvest, with head rot symptoms were found in a commercial area of approximately 3 ha, at an estimated incidence of 35 to 45%. More than 70% of the leaves were symptomatic on severely affected plants. Typical symptoms included chlorosis of older foliage, soft rot with abundant white to gray mycelium, and abundant production of large and irregularly-shaped sclerotia. The fungus was isolated from 30 symptomatic plants. Sclerotia were collected from symptomatic heads, surface sterilized in 3% NaOCl, rinsed twice with sterile distilled water, and plated on Potato Dextrose Agar (PDA) with sterile forceps. Subsequently, a dissecting needle was used to place fragments of mycelium directly on PDA. Plates were placed in an incubator at 25°C in the dark. A total of 30 representative isolates were obtained by the hyphal-tip method, one from each diseased plant (15 isolates from sclerotia and 15 from mycelial fragments). After 8 days, colonies had fast-growing, dense, cottony-white aerial mycelium forming irregular sclerotia of 3.75 ± 0.8 mm (mean ± standard deviation, n=100). Each Petri dish produced 14-25 sclerotia (mean = 18, n = 50), after 10 days. The sclerotia were initially white and gradually turned black. The isolates were identified as Sclerotinia sclerotiorum based on morphological characteristics (Saharan and Mehta 2008). Two representative isolates were chosen for molecular identification, and genomic DNA was extracted by a CTAB protocol. The ITS region and the glyceraldehyde 3-phosphate dehydrogenase (G3PDH) gene were sequenced for two isolates (White et al. 1990; Staats et al. 2005). The ITS and G3PDH sequences of a representative isolate (SsC.1) were deposited in the GenBank (ITS- OR286628; G3PDH- OR333495). BLAST analysis of the partial sequences ITS (509 bp) and G3PDH (915 bp) showed 100% similarity to S. sclerotiorum isolates (GenBank: MT436756.1 and OQ790148). Pathogenicity was confirmed by inoculating 10 detached cabbage heads of 'American Taki San Juan', using the SsC.1 isolate, according to Sanogo et al. (2015). Heads were placed on the rim of a plastic container and inserted in a moisture box with 2 cm of water on its bottom. The box was covered with a plastic sheet to maintain humidity. The control plants were inoculated with a plug of noncolonized PDA. The inoculated cabbages were covered with white to gray mycelia and abundant sclerotia within 10 days, whereas no symptoms were observed on non-inoculated controls. The fungus was re-isolated from the inoculated cabbages as described above, fulfilling Koch's postulates. The pathogenicity tests were repeated three times. White mold caused by S. sclerotiorum on Brussels sprouts was recently reported in Mexico (Ayvar-Serna et al. 2023). In 2015, S. sclerotiorum was reported on cabbage in New Mexico, causing head rot (Sanogo et al. 2015). To our knowledge, this is the first report of S. sclerotiorum causing white mold on cabbage in Mexico. This research is essential for designing management strategies and preventing spread to other production areas.

5.
Plant Dis ; 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35640945

RESUMO

Pachyrhizus erosus, commonly named jicama, is native to Mexico and is cultivated for its tuberous roots which are edible. In November 2021, field sampling was carried out in municipality of Huaquechula (18.748640N, 98.550817W, 1,580 m above sea level), state of Puebla, México. The disease had an incidence between 20 and 30% in approximately 10 ha. Infected plants showed wilting, yellowing foliage, rotting with white mycelium, abundant sclerotia were observed in the roots and tuber. Tuber splits transversely over time. Twenty plants with symptoms of disease were carried out to isolate the fungus. The sclerotia found in the tubers were disinfected with 3% NaOCl, rinsed twice with sterile distilled water, and excess moisture was removed and, transferred on Potato Dextrose Agar (PDA) culture medium and incubated at 28°C. Mycelial fragments from symptomatic tubers, were plated directly to PDA. Twenty representative isolates were obtained by hyphal-tip method, one for each diseased plant sampled (10 isolates from sclerotia and the other 10 from fragments of mycelium). After 10 days, colonies showed fast-growing, dense, cottony-white aerial mycelium, forming globoid to irregular sclerotia, measuring 1.0-1.7 mm in diameter (mean = 1.42 mm; n=100). The number of sclerotia produced per Petri dish ranged from 54 to 542 (mean = 274, n = 50). These sclerotia were initially white and gradually turned brown. Microscopic examination showed septate hyphae with some cells having clamp connections. Based on morphological characteristics, the fungal isolates were identified as Athelia rolfsii (Curzi) CC Tu & Kimbr (Syn: Sclerotium rolfsii Sacc) (Mordue 1974). For molecular identification, a representative isolate (Sr.1), the ITS region was amplified (650 bp) using primers ITS1/ITS4 (White et al. 1990). The obtained sequence (GenBank: ON206899) was subjected to BLAST analysis, where it had 100% identity with A. rolfsii isolates (GenBank: MG836252 and MH517363). Phylogenetic analysis with the neighbor-joining method in MEGAX, grouped the Sr.1 isolate into a common clade with different A. rolfsii isolates. Pathogenicity was confirmed by inoculating 20 tubers detached from healthy P. erosus variety "Criolla de Morelos", into which a portion of mycelium from the Sr.1 isolate was inserted with a sterile wooden stick at one point per tuber. In five tubers, only a sterile wooden stick was inserted as negative controls. The tubers were placed under laboratory conditions with relative humidity close to 100% and a temperature of 28°C. Symptoms like those observed in the field were observed after five days. Control tubers showed no symptoms. Additional pathogenicity tests were performed on 50 plants of 100-day-old P. erosus of the variety "Criolla de Morelos", grown in pots with sterile soil. Ten sclerotia of 10 days old were deposited at the base of the stem, 10 mm below the soil surface; as control treatment only, sterile distilled water was deposited on 20 plants. The plants were placed in a greenhouse (Center for Technological Innovation in Protected Agriculture of the Popular Autonomous University of the State of Puebla), at 28 ± 1°C and 90% of temperature and relative humidity, respectively. After 15 days, all inoculated plants showed symptoms similar to those observed in the field. Control plants showed no symptoms. A. rolfsii was re-isolated from inoculated tubers and stem, fulfilling Koch's postulates. Previously, A. rolfsii was reported in Mexico, causing southern blight on sesame (Hernández-Morales et al. 2018). To our knowledge, this is the first report of Athelia rolfsii causing southern blight on P. erosus in Mexico (Farr and Rossman 2022). This research is important to design management strategies and prevent its spread to other P. erosus-producing areas.

6.
Environ Sci Pollut Res Int ; 30(25): 67565-67581, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37118387

RESUMO

Companies have adopted green marketing and marketing strategies to position themselves in consumer preferences and combat the problem of accelerated consumption of resources that has compromised the planet's regenerative capacity, where the circular economy emerges as a solution to move towards responsible production and consumption patterns. From waste recycling marketing strategies, a descriptive analysis of 120 documents from the SCOPUS database was carried out using bibliometric techniques to know the existing state of the art for the period 1977-2021. The results indicate that the annual scientific production increased in the last ten years by over 200% for 2019, highlighting the USA, China, UK, Germany, and India, and Mexico is in position 22. The conceptual and trend analysis points out the relationship between marketing, waste management, commercialization, recycling, sustainable development, and circular economy, topics that have deepened research in the last 5 years due to the SDGs. Through intellectual analysis, schools of thought were identified, highlighting Chen, Wang, Zhang and Liu, Lu, and White as the most influential and connected with other authors. The results show no link between the study areas, but rather that they are developed in isolation, evidencing an area of opportunity to work on marketing strategies for waste recycling, where companies adopt circular economy objectives, obtaining an advantage. Competitive position and position in the market by offering products from a valorization that the consumer prefers.


Assuntos
Gerenciamento de Resíduos , Reciclagem , Bibliometria , Índia , Marketing
7.
Environ Sci Pollut Res Int ; 29(41): 61729-61746, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35668274

RESUMO

A descriptive analysis of 416 documents was performed using bibliometric techniques, in order to gather existing knowledge in circular economy focusing on waste management (2007-2020). The results of this study indicate that annual scientific production increased 94% in the last 5 years, highlighting the countries of Italy, Spain, the UK, China, Brazil, and India. Between the most cited documents stand out those related to calorific value of municipal solid waste and waste to energy technologies for achieving circular economy systems. The conceptual analysis indicates strong linkage between circular economy and sustainable production, waste management, and recycling. Emerging research trends evolved from processes and industry-oriented approach (2017) toward waste management, recycling, and circular economy (2019) and sustainable development and urban solid waste (2020). The analysis reveals five dominant circular economy and waste research themes: (1) greenhouse gases; (2) circular economy, waste management, and recycling; (3) life cycle; (4) waste treatment; and (5) anaerobic digestion and recovery; trends research are related to policy interventions, and enforcement of authorities' regulations to foster circular economy transition, increase the use of practices of recycling and reusing, as well as discourage a growing consumption culture. Results found denote the challenge represented by the implementation of comprehensive policies in circular economy. The above being a key alternative for green recovery in response to the current COVID-19 pandemic.


Assuntos
COVID-19 , Eliminação de Resíduos , Gerenciamento de Resíduos , Bibliometria , Humanos , Pandemias , Reciclagem , Resíduos Sólidos/análise , Desenvolvimento Sustentável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA