Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Langmuir ; 40(31): 16338-16348, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39066719

RESUMO

The immobilization of catalase (CAT), a crucial oxidoreductase enzyme involved in quenching reactive oxygen species, on colloids and nanoparticles presents a promising strategy to improve dispersion and storage stability while maintaining its activity. Here, the immobilization of CAT onto polymeric nanoparticles (positively (AL) or negatively (SL) charged) was implemented directly (AL) or via surface functionalization (SL) with water-soluble chitosan derivatives (glycol chitosan (GC) and methyl glycol chitosan (MGC)). The interfacial properties were optimized to obtain highly stable AL-CAT, SL-GC-CAT, and SL-MGC-CAT dispersions, and confocal microscopy confirmed the presence of CAT in the composites. Assessment of hydrogen peroxide decomposition ability revealed that applying chitosan derivatives in the immobilization process not only enhanced colloidal stability but also augmented the activity and reusability of CAT. In particular, the use of MGC has led to significant advances, indicating its potential for industrial and biomedical applications. Overall, the findings highlight the advantages of using chitosan derivatives in CAT immobilization processes to maintain the stability and activity of the enzyme as well as provide important data for the development of processable enzyme-based nanoparticle systems to combat reactive oxygen species.


Assuntos
Catalase , Quitosana , Estabilidade Enzimática , Enzimas Imobilizadas , Nanopartículas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Catalase/química , Catalase/metabolismo , Nanopartículas/química , Quitosana/química , Propriedades de Superfície , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Animais
2.
Analyst ; 147(7): 1367-1374, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35254348

RESUMO

The detection and quantification of antioxidant molecules is an important task in food science, the fine chemical industry and healthcare. Antioxidants help in preventing the deterioration of nutrition and healthcare products, while eliminating over-the-limit exogenic reactive species, which may lead to illnesses. In our contribution, an inexpensive and rapid method to determine the concentration of various molecular antioxidants was developed. The principle of the analysis relies on the cupric ion reducing antioxidant capacity (CuPRAC) method, which is based on the color-changing reduction of chelated Cu2+ ions. This complex was successfully immobilized on an alginate-functionalized layered double hydroxide (dLDH) nanosheet via electrostatic interactions. The synthesis conditions of alginate (NaAlg) and the cupric complex were optimized, and the optimized composite was fabricated on cellulose paper to obtain a sensing platform. The paper-based sensor was superior to the ones prepared without the dLDH support, as the limit of detection (LOD) values decreased, and the linearity ranges broadened. The results offer a single-point measurement to evaluate the antioxidant efficiency in a cuvette-based method. The superior ability of the sensor was assigned to the presence of solid dLDH particles, as they offer adsorption sites for the dissolved antioxidant molecules, which contributes significantly to the decrease of the diffusion limitation during the detection process.


Assuntos
Antioxidantes , Cobre , Antioxidantes/análise , Cobre/química , Oxirredução
3.
Langmuir ; 37(17): 5399-5407, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878269

RESUMO

Boron nitride nanospheres (BNNSs) were functionalized with polyelectrolytes. The effect of the polyelectrolyte dose and ionic strength on the charging and aggregation properties was investigated. At appropriate polyelectrolyte doses, charge neutralization occurred, whereas by increasing the dose, charge reversal was observed. The complete coating of the particles was indicated by a plateau in the ζ-potential values, which do not change significantly beyond the dose corresponding to the onset of such a plateau. The dispersions were highly aggregated around the charge neutralization point, while at lower or higher doses, the particles were stable. The salt-induced aggregation experiments revealed that the polyelectrolyte coatings contribute to the colloidal stability of the particles, namely, the critical coagulation concentrations deviated from the one determined for bare BNNSs. The presence of electrostatic and steric interparticle forces induced by the adsorbed polyelectrolyte chains was assumed. The obtained results confirm that the comprehensive investigation of the colloidal stability of BNNS particles is crucial to design stable or unstable dispersions and that polyelectrolytes are suitable agents for both stabilization and destabilization of BNNS dispersions, depending on the purpose of their application.

4.
Langmuir ; 37(40): 11869-11879, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601883

RESUMO

Colloidal stability was investigated in two types of particle systems, namely, with bare (h-HNT) and polyimidazolium-functionalized (h-HNT-IP-2) alkali-treated halloysite nanotubes in solutions of metal salts and ionic liquids (ILs). The valence of the metal ions and the number of carbon atoms in the hydrocarbon chain of the IL cations (1-methylimidazolium (MIM+), 1-ethyl-3-methylimidazolium (EMIM+), 1-butyl-3-methylimidazolium (BMIM+), and 1-hexyl-3-methylimidazolium (HMIM+)) were altered in the measurements. For the bare h-HNT with a negative surface charge, multivalent counterions destabilized the dispersions at low values of critical coagulation concentration (CCC) in line with the Schulze-Hardy rule. In the presence of ILs, significant adsorption of HMIM+ took place on the h-HNT surface, leading to charge neutralization and overcharging at appropriate concentrations. A weaker affinity was observed for MIM+, EMIM+, and BMIM+, while they adsorbed on the particles to different extents. The order HMIM+ < BMIM+ < EMIM+ < MIM+ was obtained for the CCCs of h-HNT, indicating that HMIM+ was the most effective in the destabilization of the colloids. For h-HNT-IP-2 with a positive surface charge, no specific interaction was observed between the salt and the IL constituent cations and the particles, i.e., the determined charge and aggregation parameters were the same within experimental error, irrespective of the type of co-ions. These results clearly indicate the relevance of ion adsorption in the colloidal stability of the nanotubes and thus provide useful information for further design of processable h-HNT dispersions.

5.
Langmuir ; 35(14): 4986-4994, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30888825

RESUMO

Charging and aggregation processes of titania nanosheets (TNS) were extensively studied in the presence of oppositely charged or like-charged polyelectrolytes in aqueous dispersions. The surface charge of the TNS was systematically varied by the pH; therefore, positive nanosheets were obtained at pH 4 and negative ones at pH 10. Strong adsorption of poly(styrene sulfonate) (PSS) of high negative line charge density on the TNS was observed at pH 4, leading to charge neutralization and reversal of the original sign of charge of the nanosheets. The adsorption of like-charged poly(diallyldimethylammonium chloride) (PDADMAC) was also feasible through a hydrophobic interaction. The predominating interparticle forces were mainly of the DLVO-type, but additional patch-charge attraction also took place in the case of PSS at low surface coverage. The TNS was found to be hydrophilic at pH 10 and no adsorption of like-charged PSS was possible because of strong electrostatic repulsion between the polyelectrolyte and the surface. The PDADMAC showed high affinity to the oppositely charged TNS surface in alkaline dispersions, giving rise to neutral and positively charged nanosheets at appropriate polyelectrolyte doses. Formation of a saturated PDADMAC layer on the TNS led to high resistance against salt-induced aggregation through the electrosteric stabilization mechanism. These results shed light on the importance of polyelectrolyte concentration, ionic strength, and charge balance on the colloidal stability of TNS, which is especially important in applications, where the nanosheets are dispersed in complex solution containing polymeric compounds and electrolytes.

6.
Langmuir ; 30(51): 15451-61, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25517214

RESUMO

Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.


Assuntos
Biomimética/métodos , Ácidos Carboxílicos/química , Meio Ambiente , Ácido Gálico/química , Nanopartículas de Magnetita/química , Polimerização , Adsorção , Minerais/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
7.
Chem Commun (Camb) ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39431451

RESUMO

Prussian blue nanozymes were surface engineered with papain enzyme to develop processable nanoparticle dispersions with antioxidant and hydrolytic activities for biocatalytic applications. Enzyme coating improved the colloidal stability of the nanozymes and the obtained papain-Prussian blue hybrid showed remarkable peroxidase (vmax = 8.82 × 10-9 M s-1, KM = 12.3 mM), superoxide dismutase (IC50 = 14.6 ppm) and protease-like (41.2 U L-1) activities.

8.
ACS Appl Mater Interfaces ; 16(40): 54485-54495, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39316750

RESUMO

Antioxidant nanozymes are powerful tools to combat oxidative stress, which can be further improved by applying nanozyme mixtures of multiple enzymatic function. Here, cocktails of Prussian blue (PB) nanocubes and copper(II) exchanged ZSM-5 zeolites (CuZ) with enhanced reactive oxygen species (ROS) scavenging activity were developed. Surface functionalization of the particles was performed using polymers to obtain stable colloids, i.e., resistant to aggregation, under a wide range of experimental conditions. The nanozyme cocktails possessed advanced antioxidant properties with multiple enzyme-like functions, catalyzing the decomposition of ROS in cascade reactions. The activity of the mixture far exceeded that of the individual particles, particularly in the peroxidase assay, where an improvement of more than an order of magnitude was observed, pointing to coamplification of the enzymatic activity. In addition, it was revealed that the copper(II) site in the CuZ plays an important role in the decomposition of both superoxide radicals and hydrogen peroxide, as it directly catalyzes the former reaction and acts as cocatalyst in the latter process by boosting the peroxidase activity of the PB nanozyme. The results give important insights into the design of synergistic particle mixtures for the broad-spectrum scavenging of ROS to develop efficient tools for antioxidant treatments in both medical therapies and industrial manufacturing processes.


Assuntos
Antioxidantes , Cobre , Ferrocianetos , Espécies Reativas de Oxigênio , Ferrocianetos/química , Antioxidantes/química , Antioxidantes/farmacologia , Cobre/química , Cobre/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/química , Zeolitas/química , Peróxido de Hidrogênio/química , Catálise , Estresse Oxidativo/efeitos dos fármacos
9.
J Mater Chem B ; 10(14): 2523-2533, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-34757359

RESUMO

A hybrid material (SL-PPN-HEP-HRP) of dual enzyme function was prepared by co-immobilization of papain (PPN) and horseradish peroxidase (HRP) on sulphate latex (SL) microspheres using heparin (HEP) polyelectrolyte as a building block in the sequential adsorption method. The doses of PPN, HEP and HRP were optimized in each step of the preparation process to achieve high functional and colloidal stability. The enzymes and the polyelectrolyte strongly adsorbed on the oppositely charged surfaces via electrostatic forces, and enzyme leakage was not observed from the hybrid material, as confirmed by colorimetric protein tests and microscopy measurements. It was found that the polyelectrolyte acted as a separator between PPN and HRP to prevent hydrolytic attack on the latter enzyme, which otherwise prevents the joint use of these important biocatalysts. Excellent colloidal stability was obtained for the SL-PPN-HEP-HRP composite and the embedded PPN and HRP showed remarkable protease and peroxidase activities, respectively, at least until five days after preparation. The present results offer a promising approach to develop biocatalytic systems of dual function, which are often required in manufacturing processes in the food industry, where the colloidal stability of such multifunctional materials is a key parameter to achieve remarkable efficiency.


Assuntos
Enzimas Imobilizadas , Peroxidase , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Peptídeo Hidrolases , Polímeros
10.
Antioxidants (Basel) ; 12(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36670961

RESUMO

The radical scavenging activity of three molecular antioxidants (trolox, rutin and ellagic acid) was investigated in different solvents with and without added polymer-based colloidal particles (SL-IP-2). Rutin and ellagic acid showed poor solubility in water, preventing the accurate measurement of the effective antioxidant concentration values, which were determined in ethanol/water (EtOH/H2O) mixtures. The presence of trolox and rutin changed neither the surface charge properties nor the size of SL-IP-2 in these solvents, while significant adsorption on SL-IP-2 was observed for ellagic acid leading to overcharging and rapid particle aggregation at appropriately high antioxidant concentrations in EtOH/H2O. The differences in the radical scavenging capacity of trolox and ellagic acid that was observed in homogeneous solutions using water or EtOH/H2O as solvents vanished in the presence of the particles. Rutin lost its activity after addition of SL-IP-2 due to the larger molecular size and lower exposure of the functional groups to the substrate upon interaction with the particles. The obtained results shed light on the importance of the type of solvent and particle-antioxidant interfacial effects on the radical decomposition ability of molecular antioxidants, which is of crucial importance in industrial processes involving heterogeneous systems.

11.
Colloids Surf B Biointerfaces ; 216: 112531, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35525228

RESUMO

Antioxidant colloids were developed via controlled heteroaggregation of cerium oxide nanoparticles (CeO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads. Positively charged CeO2 NPs were directly immobilized onto SL particles of opposite surface charge via electrostatic attraction (SL/Ce composite), while negatively charged CeO2 NPs were initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte and then, aggregated with the SL particles (SPCe composite). The PDADMAC served to induce a charge reversal on CeO2 NPs, while the SL support prevented nanoparticle aggregation under conditions, where the dispersions of bare CeO2 NPs were unstable. Both SL/Ce and SPCe showed enhanced radical scavenging activity compared to bare CeO2 NPs and were found to mimic peroxidase enzymes. The results demonstrate that SL beads are suitable supports to formulate CeO2 particles and to achieve remarkable dispersion storage stability. The PDADMAC functionalization and immobilization of CeO2 NPs neither compromised the peroxidase-like activity nor the radical scavenging potential. The obtained SL/Ce and SPCe artificial enzymes are foreseen to be excellent antioxidant agents in various applications in the biomedical, food, and cosmetic industries.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Antioxidantes , Coloides , Microesferas , Peroxidases
12.
J Colloid Interface Sci ; 590: 28-37, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524718

RESUMO

Immobilization of single antioxidant enzyme systems was frequently studied in the past, however, there is a lack of reliable reports on the co-immobilization of such enzymes. Here, an antioxidant enzyme cascade involving superoxide dismutase (SOD) and horseradish peroxidase (HRP) was successfully immobilized on titania nanosheets (TNS) by the sequential adsorption method using poly(diallyldimethylammonium chloride) (PDADMAC) and poly(styrene sulfonate) (PSS) polyelectrolyte building blocks. The development of the cascade system was based on a colloid approach, in which the charging and aggregation processes were optimized in each synthetic step. The polyelectrolyte and enzyme multilayers were built up in two different sequences at the particle interface, namely, TNS-PDADMAC-SOD-PSS-HRP and TNS-HRP-PDADMAC-SOD-PSS. The formation of the polyelectrolyte layers led to charge reversal of the carrier and the saturated PDADMAC and PSS layers stabilized the dispersions, in particular, their resistance against salt-induced aggregation was especially excellent. The results of enzymatic assays revealed that the SOD and HRP-like activities of the composites depended on the location of the enzymes in the hybrid material. The obtained compounds showed remarkable antioxidant effect and were able to simultaneously decompose superoxide radical anions and hydrogen peroxide. The cascade systems are of great promise in industrial manufacturing processes during the preparation of high-quality products without any damages by reactive oxygen species.


Assuntos
Antioxidantes , Titânio , Antioxidantes/farmacologia , Coloides , Enzimas Imobilizadas/metabolismo , Estresse Oxidativo
13.
J Mater Chem B ; 9(24): 4929-4940, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34105573

RESUMO

The preparation of an antioxidant hybrid material by controlled heteroaggregation of manganese oxide nanoparticles (MnO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads was accomplished. Negatively charged MnO2 NPs were prepared by precipitation and initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte to induce charge reversal allowing decoration of oppositely charged SL surfaces via simple mixing. The PDADMAC-functionalized MnO2 NPs (PMn) aggregated with the SL particles leading to the formation of negatively charged, neutral and positively charged (SPMn) composites. The charge neutralization resulted in rapidly aggregating dispersions, while stable samples were observed once the composites possessed sufficiently high negative and positive charge, below and above the charge neutralization point, respectively. The antioxidant assays revealed that SL served as a suitable substrate and that the PDADMAC functionalization and immobilization of MnO2 NPs did not compromise their catalase (CAT) and superoxide dismutase (SOD)-like activities, which were also maintained within a wide temperature range. The obtained SPMn composite is expected to be an excellent candidate as an antioxidant material for the efficient scavenging of reactive oxygen species at both laboratory and larger scales, even under harsh conditions, where natural antioxidants do not function.


Assuntos
Biocatálise , Látex/química , Compostos de Manganês/química , Óxidos/química , Espécies Reativas de Oxigênio/química , Sulfatos/química
14.
J Phys Chem B ; 123(46): 9984-9991, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31670963

RESUMO

The effect of papain adsorption on the surface charge properties and aggregation mechanism of sulfate-functionalized polystyrene latex particles was studied. The positively charged enzyme possessed a high affinity to the oppositely charged particles, giving rise to charge neutralization and charge reversal at appropriate papain concentrations. The tendency in the particle aggregation rates at different enzyme doses revealed that the colloidal stability of the samples is governed by interparticle forces of electrostatic origin. The aggregation mechanism was qualitatively described within the classical DLVO theory, and unstable dispersions were detected near the charge neutralization point, while particle aggregation was not observed at low and elevated papain concentrations. The relatively high dispersion stability of the bare latex particles was maintained upon the formation of an enzyme layer on the surface, and the obtained latex-papain composite showed notable resistance against salt-induced aggregation. Remarkable hydrolytic and antioxidant activities of the immobilized enzyme were observed in probe reactions; therefore, the obtained hybrid can be considered as a multifunctional biocatalytic system with great promise in applications in industrial manufacturing processes.


Assuntos
Látex/química , Papaína/química , Adsorção , Antioxidantes/química , Biocatálise , Difusão Dinâmica da Luz , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Papaína/metabolismo , Sais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA