Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochem Soc Trans ; 47(6): 1895-1907, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31819955

RESUMO

Research on methanogenic Archaea has experienced a revival, with many novel lineages of methanogens recently being found through cultivation and suggested via metagenomics approaches, respectively. Most of these lineages comprise Archaea (potentially) capable of methanogenesis from methylated compounds, a pathway that had previously received comparably little attention. In this review, we provide an overview of these new lineages with a focus on the Methanomassiliicoccales. These lack the Wood-Ljungdahl pathway and employ a hydrogen-dependent methylotrophic methanogenesis pathway fundamentally different from traditional methylotrophic methanogens. Several archaeal candidate lineages identified through metagenomics, such as the Ca. Verstraetearchaeota and Ca. Methanofastidiosa, encode genes for a methylotrophic methanogenesis pathway similar to the Methanomassiliicoccales. Thus, the latter are emerging as a model system for physiological, biochemical and ecological studies of hydrogen-dependent methylotrophic methanogens. Methanomassiliicoccales occur in a large variety of anoxic habitats including wetlands and animal intestinal tracts, i.e. in the major natural and anthropogenic sources of methane emissions, respectively. Especially in ruminant animals, they likely are among the major methane producers. Taken together, (hydrogen-dependent) methylotrophic methanogens are much more diverse and widespread than previously thought. Considering the role of methane as potent greenhouse gas, resolving the methanogenic nature of a broad range of putative novel methylotrophic methanogens and assessing their role in methane emitting environments are pressing issues for future research on methanogens.


Assuntos
Archaea/fisiologia , Metano/metabolismo , Animais , Archaea/genética , Archaea/metabolismo , Ciclo do Carbono , Genes Arqueais , Hidrogênio/metabolismo , Ruminantes , Áreas Alagadas
2.
Appl Environ Microbiol ; 82(15): 4505-4516, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208108

RESUMO

UNLABELLED: A new clade of archaea has recently been proposed to constitute the seventh methanogenic order, the Methanomassiliicoccales, which is related to the Thermoplasmatales and the uncultivated archaeal clades deep-sea hydrothermal vent Euryarchaeota group 2 and marine group II Euryarchaeota but only distantly related to other methanogens. In this study, we investigated the membrane lipid composition of Methanomassiliicoccus luminyensis, the sole cultured representative of this seventh order. The lipid inventory of M. luminyensis comprises a unique assemblage of novel lipids as well as lipids otherwise typical for thermophilic, methanogenic, or halophilic archaea. For instance, glycerol sesterpanyl-phytanyl diether core lipids found mainly in halophilic archaea were detected, and so were compounds bearing either heptose or methoxylated glycosidic head groups, neither of which have been reported so far for other archaea. The absence of quinones or methanophenazines is consistent with a biochemistry of methanogenesis different from that of the methanophenazine-containing methylotrophic methanogens. The most distinctive characteristic of the membrane lipid composition of M. luminyensis, however, is the presence of tetraether lipids in which one glycerol backbone is replaced by either butane- or pentanetriol, i.e., lipids recently discovered in marine sediments. Butanetriol dibiphytanyl glycerol tetraether (BDGT) constitutes the most abundant core lipid type (>50% relative abundance) in M. luminyensis We have thus identified a source for these unusual orphan lipids. The complementary analysis of diverse marine sediment samples showed that BDGTs are widespread in anoxic layers, suggesting an environmental significance of Methanomassiliicoccales and/or related BDGT producers beyond gastrointestinal tracts. IMPORTANCE: Cellular membranes of members of all three domains of life, Archaea, Bacteria, and Eukarya, are largely formed by lipids in which glycerol serves as backbone for the hydrophobic alkyl chains. Recently, however, archaeal tetraether lipids with either butanetriol or pentanetriol as a backbone were identified in marine sediments and attributed to uncultured sediment-dwelling archaea. Here we show that the butanetriol-based dibiphytanyl tetraethers constitute the major lipids in Methanomassiliicoccus luminyensis, currently the only isolate of the novel seventh order of methanogens. Given the absence of these lipids in a large set of archaeal isolates, these compounds may be diagnostic for the Methanomassiliicoccales and/or closely related archaea.


Assuntos
Butanos/metabolismo , Euryarchaeota/isolamento & purificação , Euryarchaeota/metabolismo , Metabolismo dos Lipídeos , Metanol/metabolismo , Água do Mar/microbiologia , Euryarchaeota/classificação , Euryarchaeota/genética , Sedimentos Geológicos/microbiologia , Lipídeos/química , Filogenia
3.
Nat Commun ; 15(1): 4151, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755154

RESUMO

Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for atmospheric methane. Still, the physiological basis allowing atmMOB to grow on air is not well understood. Here we assess the ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, and nitrogen source. Four species, including three outside the canonical atmMOB group USCα, enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months of growth on air. These four species exhibited distinct substrate preferences implying the existence of multiple metabolic strategies to grow on air. The estimated energy yields of the atmMOB were substantially lower than previously assumed necessary for cellular maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also covered their nitrogen requirements from air. During growth on air, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation. Furthermore, we confirm that a high apparent specific affinity for methane is a key characteristic of atmMOB. Our work shows that atmMOB grow on the trace concentrations of methane, carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that enable atmMOB to mitigate greenhouse gases.


Assuntos
Monóxido de Carbono , Hidrogênio , Metano , Oxirredução , Metano/metabolismo , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Atmosfera/química , Ar , Nitrogênio/metabolismo , Gases de Efeito Estufa/metabolismo
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722823

RESUMO

Physiological responses of soil microorganisms to global warming are important for soil ecosystem function and the terrestrial carbon cycle. Here, we investigate the effects of weeks, years, and decades of soil warming across seasons and time on the microbial protein biosynthesis machineries (i.e. ribosomes), the most abundant cellular macromolecular complexes, using RNA:DNA and RNA:MBC (microbial biomass carbon) ratios as proxies for cellular ribosome contents. We compared warmed soils and non-warmed controls of 15 replicated subarctic grassland and forest soil temperature gradients subject to natural geothermal warming. RNA:DNA ratios tended to be lower in the warmed soils during summer and autumn, independent of warming duration (6 weeks, 8-14 years, and > 50 years), warming intensity (+3°C, +6°C, and +9°C), and ecosystem type. With increasing temperatures, RNA:MBC ratios were also decreasing. Additionally, seasonal RNA:DNA ratios of the consecutively sampled forest showed the same temperature-driven pattern. This suggests that subarctic soil microorganisms are depleted of ribosomes under warm conditions and the lack of consistent relationships with other physicochemical parameters besides temperature further suggests temperature as key driver. Furthermore, in incubation experiments, we measured significantly higher CO2 emission rates per unit of RNA from short- and long-term warmed soils compared to non-warmed controls. In conclusion, ribosome reduction may represent a widespread microbial physiological response to warming that offers a selective advantage at higher temperatures, as energy and matter can be reallocated from ribosome synthesis to other processes including substrate uptake and turnover. This way, ribosome reduction could have a substantial effect on soil carbon dynamics.


Assuntos
Ribossomos , Estações do Ano , Microbiologia do Solo , Solo , Ribossomos/metabolismo , Solo/química , Aquecimento Global , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Florestas , Pradaria , Temperatura , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Carbono/metabolismo
5.
ISME J ; 17(4): 502-513, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36650275

RESUMO

Methanotrophs oxidize most of the methane (CH4) produced in natural and anthropogenic ecosystems. Often living close to soil surfaces, these microorganisms must frequently adjust to temperature change. While many environmental studies have addressed temperature effects on CH4 oxidation and methanotrophic communities, there is little knowledge about the physiological adjustments that underlie these effects. We have studied thermal acclimation in Methylobacter, a widespread, abundant, and environmentally important methanotrophic genus. Comparisons of growth and CH4 oxidation kinetics at different temperatures in three members of the genus demonstrate that temperature has a strong influence on how much CH4 is consumed to support growth at different CH4 concentrations. However, the temperature effect varies considerably between species, suggesting that how a methanotrophic community is composed influences the temperature effect on CH4 uptake. To understand thermal acclimation mechanisms widely we carried out a transcriptomics experiment with Methylobacter tundripaludum SV96T. We observed, at different temperatures, how varying abundances of transcripts for glycogen and protein biosynthesis relate to cellular glycogen and ribosome concentrations. Our data also demonstrated transcriptional adjustment of CH4 oxidation, oxidative phosphorylation, membrane fatty acid saturation, cell wall composition, and exopolysaccharides between temperatures. In addition, we observed differences in M. tundripaludum SV96T cell sizes at different temperatures. We conclude that thermal acclimation in Methylobacter results from transcriptional adjustment of central metabolism, protein biosynthesis, cell walls and storage. Acclimation leads to large shifts in CH4 consumption and growth efficiency, but with major differences between species. Thus, our study demonstrates that physiological adjustments to temperature change can substantially influence environmental CH4 uptake rates and that consideration of methanotroph physiology might be vital for accurate predictions of warming effects on CH4 emissions.


Assuntos
Ecossistema , Microbiologia do Solo , Filogenia , RNA Ribossômico 16S/metabolismo , Oxirredução , Metano/metabolismo , Solo/química
6.
Sci Adv ; 8(12): eabm3230, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333567

RESUMO

How soil microorganisms respond to global warming is key to infer future soil-climate feedbacks, yet poorly understood. Here, we applied metatranscriptomics to investigate microbial physiological responses to medium-term (8 years) and long-term (>50 years) subarctic grassland soil warming of +6°C. Besides indications for a community-wide up-regulation of centralmetabolic pathways and cell replication, we observed a down-regulation of the bacterial protein biosynthesis machinery in the warmed soils, coinciding with a lower microbial biomass, RNA, and soil substrate content. We conclude that permanently accelerated reaction rates at higher temperatures and reduced substrate concentrations result in cellular reduction of ribosomes, the macromolecular complexes carrying out protein biosynthesis. Later efforts to test this, including a short-term warming experiment (6 weeks, +6°C), further supported our conclusion. Down-regulating the protein biosynthesis machinery liberates energy and matter, allowing soil bacteria to maintain high metabolic activities and cell division rates even after decades of warming.

7.
ISME J ; 15(9): 2665-2675, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33746204

RESUMO

Trophic interactions are crucial for carbon cycling in food webs. Traditionally, eukaryotic micropredators are considered the major micropredators of bacteria in soils, although bacteria like myxobacteria and Bdellovibrio are also known bacterivores. Until recently, it was impossible to assess the abundance of prokaryotes and eukaryotes in soil food webs simultaneously. Using metatranscriptomic three-domain community profiling we identified pro- and eukaryotic micropredators in 11 European mineral and organic soils from different climes. Myxobacteria comprised 1.5-9.7% of all obtained SSU rRNA transcripts and more than 60% of all identified potential bacterivores in most soils. The name-giving and well-characterized predatory bacteria affiliated with the Myxococcaceae were barely present, while Haliangiaceae and Polyangiaceae dominated. In predation assays, representatives of the latter showed prey spectra as broad as the Myxococcaceae. 18S rRNA transcripts from eukaryotic micropredators, like amoeba and nematodes, were generally less abundant than myxobacterial 16S rRNA transcripts, especially in mineral soils. Although SSU rRNA does not directly reflect organismic abundance, our findings indicate that myxobacteria could be keystone taxa in the soil microbial food web, with potential impact on prokaryotic community composition. Further, they suggest an overlooked, yet ecologically relevant food web module, independent of eukaryotic micropredators and subject to separate environmental and evolutionary pressures.


Assuntos
Cadeia Alimentar , Myxococcales , Animais , Myxococcales/genética , Comportamento Predatório , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
8.
Microbiol Resour Announc ; 10(48): e0044321, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854727

RESUMO

The full genome of a Methanomassiliicoccales strain, U3.2.1, was obtained from enrichment cultures of percolation fen peat soil under methanogenic conditions, with methanol and hydrogen as the electron acceptor and donor, respectively. Metagenomic assembly of combined long-read and short-read sequences resulted in a 1.51-Mbp circular genome.

9.
ISME Commun ; 1(1): 69, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36759732

RESUMO

Global warming increases soil temperatures and promotes faster growth and turnover of soil microbial communities. As microbial cell walls contain a high proportion of organic nitrogen, a higher turnover rate of microbes should also be reflected in an accelerated organic nitrogen cycling in soil. We used a metatranscriptomics and metagenomics approach to demonstrate that the relative transcription level of genes encoding enzymes involved in the extracellular depolymerization of high-molecular-weight organic nitrogen was higher in medium-term (8 years) and long-term (>50 years) warmed soils than in ambient soils. This was mainly driven by increased levels of transcripts coding for enzymes involved in the degradation of microbial cell walls and proteins. Additionally, higher transcription levels for chitin, nucleic acid, and peptidoglycan degrading enzymes were found in long-term warmed soils. We conclude that an acceleration in microbial turnover under warming is coupled to higher investments in N acquisition enzymes, particularly those involved in the breakdown and recycling of microbial residues, in comparison with ambient conditions.

10.
mSystems ; 3(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116788

RESUMO

Ruminant livestock is a major source of the potent greenhouse gas methane. The complex rumen microbiome, consisting of bacteria, archaea, and microbial eukaryotes, facilitates anaerobic plant biomass degradation in the cow rumen, leading to methane emissions. Using an integrated approach combining multidomain quantitative metatranscriptomics with gas and volatile fatty acid (VFA) profiling, we aimed at obtaining the most comprehensive picture of the active rumen microbiome during feed degradation to date. Bacterial, archaeal, and eukaryotic biomass, but also methane emissions and VFA concentrations, increased drastically within an hour after feed intake. mRNA profiling revealed a dynamic response of carbohydrate-active enzyme transcripts, transcripts involved in VFA production and methanogenesis. While the relative abundances of functional transcripts did not mirror observed processes, such as methane emissions, transformation to mRNA abundance per gram of rumen fluid echoed ruminant processes. The microbiome composition was highly individual, with, e.g., ciliate, Neocallimastigaceae, Prevotellaceae, Succinivibrionaceae, and Fibrobacteraceae abundances differing between cows. Microbiome individuality was accompanied by inter- and intradomain multifunctional redundancy among microbiome members during feed degradation. This likely enabled the robust performance of the anaerobic degradation process in each rumen. Neocallimastigaceae and ciliates contributed an unexpectedly large share of transcripts for cellulose- and hemicellulose-degrading enzymes, respectively. Methyl-reducing but not CO2-reducing methanogens were positively correlated with methane emissions. While Methanomassiliicoccales switched from methanol to methylamines as electron acceptors, Methanosphaera became the dominating methanol-reducing methanogen. This study for the first time linked rumen meta-omics with processes and enabled holistic insights into the contribution of all microbiome members to feed degradation. IMPORTANCE Ruminant animals, such as cows, live in a tight symbiotic association with microorganisms, allowing them to feed on otherwise indigestible plant biomass as food sources. Methane is produced as an end product of the anaerobic feed degradation in ruminants and is emitted to the atmosphere, making ruminant animals among the major anthropogenic sources of the potent greenhouse gas methane. Using newly developed quantitative metatranscriptomics for holistic microbiome analysis, we here identified bacterial, archaeal, and eukaryotic key players and the short-term dynamics of the rumen microbiome during anaerobic plant biomass degradation and subsequent methane emissions. These novel insights might pave the way for novel ecologically and economically sustainable methane mitigation strategies, much needed in times of global climate change.

11.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26613748

RESUMO

Methanogenic Thermoplasmata of the novel order Methanomassiliicoccales were recently discovered in human and animal gastro-intestinal tracts (GITs). However, their distribution in other methanogenic environments has not been addressed systematically. Here, we surveyed Methanomassiliicoccales presence in wetland soils, a globally important source of methane emissions to the atmosphere, and in the GITs of different animals by PCR targeting their 16S rRNA and methyl:coenzyme M reductase (α-subunit) genes. We detected Methanomassiliicoccales in all 16 peat soils investigated, indicating their wide distribution in these habitats. Additionally, we detected their genes in various animal faeces. Methanomassiliicoccales were subdivided in two broad phylogenetic clades designated 'environmental' and 'GIT' clades based on differential, although non-exclusive, habitat preferences of their members. A well-supported cluster within the environmental clade comprised more than 80% of all wetland 16S rRNA gene sequences. Metagenome assembly from bovine rumen fluid enrichments resulted in two almost complete genomes of both Methanomassiliicoccales clades. Comparative genomics revealed that members of the environmental clade contain larger genomes and a higher number of genes encoding anti-oxidative enzymes than animal GIT clade representatives. This study highlights the wide distribution of Methanomassiliicoccales in wetlands, which suggests that they contribute to methane emissions from these climate-relevant ecosystems.


Assuntos
Euryarchaeota/classificação , Euryarchaeota/genética , Microbioma Gastrointestinal/genética , Metano/metabolismo , Rúmen/microbiologia , Poluentes Atmosféricos/metabolismo , Animais , Áustria , Sequência de Bases , Bovinos , Ecossistema , Euryarchaeota/metabolismo , Fezes/microbiologia , Genômica , Alemanha , Humanos , Itália , Metagenoma , Metano/biossíntese , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA