Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 112(3): 311-317, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33541445

RESUMO

The quality of biological control agents used in augmentative releases may be affected by rearing conditions due to inbreeding or laboratory adaptation, or to phenotypic effects of the rearing environment. We hypothesized that individuals from a wild population would be in better body condition and kill more prey than individuals from a commercially produced population. We caught wild Orius majusculus (Reuter) in a maize field and compared their initial body mass, survival, and prey reduction capacity to commercially produced O. majusculus. Predation capacity and survival were compared in short-term Petri dish tests with Frankliniella tenuicornis (Uzel) thrips, Ephestia kuehniella (Zeller) moth eggs, or Rhopalosiphum padi (L.) aphids as prey, and in longer-term outdoor mesocosms containing live seedling wheat grass with thrips or aphids as prey. Wild-caught O. majusculus were typically heavier and overall had higher survival during tests than commercially produced O. majusculus. Females were heavier than males and typically killed more prey. However, we found no difference between wild-caught and commercially produced individuals on prey reduction, neither in Petri dishes nor in mesocosms. Our study suggests that commercially produced O. majusculus have lower body condition than wild O. majusculus due to their lower body mass and survival, but that this does not have any negative effect on the number of pest prey killed over the timelines and conditions of our tests. Commercially produced O. majusculus thus did not have a lower impact on pest prey numbers than wild-caught individuals and therefore had similar biological control value under our study conditions.


Assuntos
Afídeos , Heterópteros , Mariposas , Tisanópteros , Animais , Feminino , Masculino , Comportamento Predatório
2.
J Anim Ecol ; 90(6): 1515-1524, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713446

RESUMO

Temperatures in the Arctic are increasing at a faster pace than at lower latitudes resulting in range expansion of boreal species. In Greenland, the warming also drives accelerating melt of the Greenland Ice Sheet resulting in more meltwater entering Greenland fjords in summer. Our aim was to determine if increasing summer temperatures combined with lower salinity can induce the expression of stress-related proteins, for example, heat shock protein, in boreal intertidal mussels in Greenland, and whether low salinity reduces the upper thermal limit at which mortality occurs. We conducted a mortality experiment, using 12 different combinations of salinity and air temperature treatments during a simulated tidal regime, and quantified the change in mRNA levels of five stress-related genes (hsp24, hsp70, hsp90, sod and p38) in surviving mussels to discern the level of sublethal stress. Heat-induced mortality occurred in mussels exposed to an air temperature of 30°C and mortality was higher in treatments with lowered salinity (5 and 15‰), which confirms that low habitat salinity decreases the upper thermal limit of Mytilus edulis. The gene expression analysis supported the mortality results, with the highest gene expression found at combinations of high temperature and low salinity. Combined with seasonal measurements of intertidal temperatures in Greenland, we suggest heat stress occurs in low salinity intertidal area, and that further lowered salinity in coastal water due to increased run-off can make intertidal bivalves more susceptible to summer heat stress. This study thus provides an example of how different impacts of climate warming can work synergistically to stress marine organisms.


Assuntos
Mytilus edulis , Animais , Groenlândia , Resposta ao Choque Térmico , Temperatura Alta , Temperatura
3.
Artigo em Inglês | MEDLINE | ID: mdl-31923628

RESUMO

Low temperatures limit the distribution and abundance of ectotherms. However, many insects can survive low temperatures by employing one of two cold tolerance strategies: freeze avoidance or freeze tolerance. Very few species can employ both strategies, but those that do provide a rare opportunity to study the mechanisms that differentiate freeze tolerance and freeze avoidance. We showed that overwintering pupae of the cabbage white butterfly Pieris rapae can be freeze tolerant or freeze avoidant. Pupae from a population of P. rapae in northeastern Russia (Yakutsk) froze at c. -9.3 °C and were freeze-tolerant in 2002-2003 when overwintered outside. However, P. rapae from both Yakutsk and southern Canada (London) acclimated to milder laboratory conditions in 2014 and 2017 froze at lower temperatures (< -20 °C) and were freeze-avoidant. Summer-collected P. rapae larvae (collected in Yakutsk in 2016) were partially freeze-tolerant, and decreased the temperature at which they froze in response to starvation at mild low temperatures (4 °C) and repeated partial freezing events. By comparing similarly-acclimated P. rapae pupae from both populations, we identified molecules that may facilitate low temperature tolerance, including the hemolymph ice-binding molecules and several potential low molecular weight cryoprotectants. Pieris rapae from Yakutsk exhibited high physiological plasticity, accumulating cryoprotectants and almost doubling their hemolymph osmolality when supercooled to -15 °C for two weeks, while the London P. rapae population exhibited minimal plasticity. We hypothesize that physiological plasticity is an important adaptation to extreme low temperatures (i.e. in Yakutsk) and may facilitate the transition between freeze avoidance and freeze tolerance.


Assuntos
Adaptação Fisiológica , Borboletas/fisiologia , Temperatura Baixa , Criobiologia , Congelamento , Hemolinfa/fisiologia , Animais , Canadá , Federação Russa
4.
J Anim Ecol ; 88(2): 258-268, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30303532

RESUMO

Temperature influences biological processes of ectotherms including ecological interactions, but interaction strengths may depend on species-specific traits. Furthermore, ectotherms acclimate to prevailing thermal conditions by adjusting physiological parameters, which often implies costs to other fitness-related parameters. Both predators and prey may therefore pay thermal acclimation costs following exposure to suboptimal temperatures. However, these costs may be asymmetrical between predator and prey, and between the predator and different species of concurrent prey. We investigated whether thermal pre-exposure affected subsequent kill rate and predator fitness when foraging on prey that differ in ease of capture, and whether changes were primarily caused by predator or by prey pre-exposure effects. Specifically, we were interested in whether there were interactions between predator pre-exposed temperature and specific prey. Using the mesostigmatid mite Gaeolaelaps aculeifer as a generalist predator and the collembolans Folsomia candida and Protaphorura fimata as prey, we measured the impact of present temperature, predator pre-exposure temperature, prey pre-exposure temperature (all 10 or 20°C), prey species, and all interactions on prey numbers killed, predator eggs produced, and exploitation of killed prey in a full factorial design. Mites killed P. fimata in equal numbers independent of the presence of F. candida, but killed F. candida when P. fimata was absent. Mite kill rate and reproduction were significantly affected by mite pre-exposure temperature and test temperature, but not by prey pre-exposure temperature. Significantly more of the slower prey was killed than of the quicker prey. Importantly, we found significant synergistic negative interaction effects between predator cold pre-exposure and hunting prey of higher agility on predator kill rate and reproduction. Our findings show that the negative effects of cold and cold pre-exposure on kill rate and reproduction may be more severe when predators forage on quick prey. The study implies that predator cold exposure has consequences for specific prey survival following cold due to altered predation pressures, which in nature should influence the specific prey population dynamics and apparent competition outcomes. The findings exemplify how not only current but also preceding conditions affect ecological interactions, and that effect strength depends on the species involved.


Assuntos
Cadeia Alimentar , Ácaros , Animais , Óvulo , Comportamento Predatório , Reprodução
5.
J Therm Biol ; 86: 102428, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31789224

RESUMO

Ectotherms can use microclimatic variation and behavioral thermoregulation to cope with unfavorable environmental temperatures. However, relatively little is known about how and if thermoregulatory behavior is used across life stages in small ectothermic insects. Here we investigate differences between three specialized Drosophila species from temperate, tropical or desert habitats and one cosmopolitan species by estimating the preferred temperature (Tpref) and the breadth (Tbreadth) of the distribution of adults, adult egg-laying, and larvae in thermal gradients. We also assess the plasticity of thermal preference following developmental acclimation to three constant temperatures. For egg-laying and larvae, we observe significant species differences in preferred temperature but this is not predicted by thermal ecology of the species. We corroborated this with previous studies of other Drosophila species and found that Tpref for egg laying and larvae have no relationship with annual mean temperature of the species' natural habitat. While adults have the greatest mobility, they show the greater variation in preference compared to juveniles contradicting common assumptions. We found evidence of developmental thermal acclimation in adult egg-laying preferred temperature, Tpref increasing with acclimation temperature, and in the breadth of the temperature preference distributions, Tbreadth decreasing with increasing acclimation temperature. Together, these data provide a high resolution and comprehensive look at temperature preferences across life stages and in response to acclimation. Results suggest that thermal preference, particularly in the early life stages, is relatively conserved among species and unrelated to temperature at species origin. Measuring thermal preference, in addition to thermal performance, is essential for understanding how species have adapted/will adapt to their thermal environment.


Assuntos
Aclimatação , Drosophila/fisiologia , Estágios do Ciclo de Vida , Animais , Drosophila/crescimento & desenvolvimento , Feminino , Masculino , Especificidade da Espécie , Temperatura
6.
Proc Biol Sci ; 285(1890)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381381

RESUMO

For over a century, the hypothesis of temperature compensation, the maintenance of similar biological rates in species from different thermal environments, has remained controversial. An alternative idea, that fitness is greater at higher temperatures (the thermodynamic effect), has gained increasing traction. This alternative hypothesis is also being used to understand large-scale biodiversity responses to environmental change. Yet evidence in favour of each of these contrasting hypotheses continues to emerge. In consequence, the fundamental nature of organismal thermal responses and its implications remain unresolved. Here, we investigate these ideas explicitly using a global dataset of 619 observations of four categories of organismal performance, spanning 14 phyla and 403 species. In agreement with both hypotheses, we show a positive relationship between the temperature of maximal performance rate (Topt) and environmental temperature (Tenv) for developmental rate and locomotion speed, but not growth or photosynthesis rate. Next, we demonstrate that relationships between Tenv and the maximal performance rate (Umax) are rarely significant and positive, as expected if a thermodynamic effect predominates. By contrast, a positive relationship between Topt and Umax is always present, but markedly weaker than theoretically predicted. These outcomes demonstrate that while some form of thermodynamic effect exists, ample scope is present for biochemical and physiological adaptation to thermal environments in the form of temperature compensation.


Assuntos
Adaptação Fisiológica , Temperatura , Termodinâmica , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Crescimento/fisiologia , Locomoção/fisiologia , Fotossíntese/fisiologia , Filogenia , Fenômenos Fisiológicos Vegetais , Plantas
7.
J Therm Biol ; 75: 88-96, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30017057

RESUMO

Ectothermic animals like fishes are extremely dependent on temperature, as they are not able to change body temperature physiologically. When populations are found in isolated water bodies such as small lakes they will have to respond to stressful high temperatures by behavioral avoidance, phenotypic plasticity or microevolutionary change. We analyzed threespine sticklebacks from two large and two small lakes, representing different isolated populations. We determined maximum critical thermal limits (CTmax) and the associated gene expression responses in three heat shock (hsp60, hsp70, hsp90) and two key metabolic (idh2, fbp2) genes at ecologically relevant moderate heat stress (26 °C) as well as at the critical thermal limit (CTmax). CTmax showed slight variation across populations with no strong indication of local adaptation. Likewise, there was no strong evidence for local adaptation at the level of gene expression. The expression of the metabolic genes indicated a shift from aerobic towards anaerobic energy production with extreme heat stress. We conclude that threespine sticklebacks do not show severe stress during the warmest temperatures they are likely to encounter during current temperature regimes in Denmark, and following this show no sign of local adaptation even in small, isolated water bodies.


Assuntos
Temperatura Alta , Smegmamorpha , Termotolerância , Animais , Dinamarca , Feminino , Proteínas de Peixes/genética , Frutose-Bifosfatase/genética , Expressão Gênica , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/fisiopatologia , Transtornos de Estresse por Calor/veterinária , Proteínas de Choque Térmico/genética , Isocitrato Desidrogenase/genética , Lagos , Masculino , Smegmamorpha/genética , Smegmamorpha/fisiologia
8.
J Therm Biol ; 73: 41-49, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29549990

RESUMO

Climatic conditions can be very heterogeneous even over small geographic scales, and are believed to be major determinants of the abundance and distribution of species and populations. Organisms are expected to evolve in response to the frequency and magnitude of local thermal extremes, resulting in local adaptation. Using replicate yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae) populations from cold (northern Europe) and warm climates (southern Europe), we compared 1) responses to short-term heat and cold shocks in both sexes, 2) heat shock protein (Hsp70) expression in adults and eggs, and 3) female reproductive traits when facing short-term heat stress during egg maturation. Contrary to expectations, thermal traits showed minor geographic differentiation, with weak evidence for greater heat resistance of southern flies but no differentiation in cold resistance. Hsp70 protein expression was little affected by heat stress, indicating systemic rather than induced regulation of the heat stress response, possibly related to this fly group's preference for cold climes. In contrast, sex differences were pronounced: males (which are larger) endured hot temperatures longer, while females featured higher Hsp70 expression. Heat stress negatively affected various female reproductive traits, reducing first clutch size, overall reproductive investment, egg lipid content, and subsequent larval hatching. These responses varied little across latitude but somewhat among populations in terms of egg size, protein content, and larval hatching success. Several reproductive parameters, but not Hsp70 expression, exhibited heritable variation among full-sib families. Rather than large-scale clinal geographic variation, our study suggests some local geographic population differentiation in the ability of yellow dung flies to buffer the impact of heat stress on reproductive performance.


Assuntos
Dípteros/fisiologia , Resposta ao Choque Térmico , Adaptação Fisiológica , Animais , Temperatura Baixa , Europa (Continente) , Feminino , Geografia , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Larva/fisiologia , Masculino , Reprodução , Caracteres Sexuais
9.
Glob Chang Biol ; 22(7): 2370-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27109012

RESUMO

Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary response to realistic climate change happening over short-time scale, and calls for incorporating evolution into models predicting future response of species to climate change. It also shows that designed climate change experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response.


Assuntos
Evolução Biológica , Mudança Climática , Invertebrados/genética , Solo , Animais , Clima , Frequência do Gene , Polimorfismo Genético , Temperatura
10.
J Exp Biol ; 219(Pt 17): 2726-32, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353229

RESUMO

The ability of insects to cope with stressful temperatures through adaptive plasticity has allowed them to thrive under a wide range of thermal conditions. Developmental plasticity is generally considered to be a non-reversible phenotypic change, e.g. in morphological traits, while adult acclimation responses are often considered to be reversible physiological responses. However, physiologically mediated thermal acclimation might not follow this general prediction. We investigated the magnitude and rate of reversibility of developmental thermal plasticity responses in heat and cold tolerance of adult flies, using a full factorial design with two developmental and two adult temperatures (15 and 25°C). We show that cold tolerance attained during development is readily adjusted to the prevailing conditions during adult acclimation, with a symmetric rate of decrease or increase. In contrast, heat tolerance is only partly reversible during acclimation and is thus constrained by the temperature during development. The effect of adult acclimation on heat tolerance was asymmetrical, with a general loss of heat tolerance with age. Surprisingly, the decline in adult heat tolerance at 25°C was decelerated in flies developed at low temperatures. This result was supported by correlated responses in two senescence-associated traits and in accordance with a lower rate of ageing after low temperature development, suggesting that physiological age is not reset at eclosion. The results have profound ecological consequences for populations, as optimal developmental temperatures will be dependent on the thermal conditions faced in the adult stage and the age at which they occur.


Assuntos
Envelhecimento/fisiologia , Temperatura Baixa , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Temperatura Alta , Termotolerância/fisiologia , Aclimatação/fisiologia , Animais , Fatores de Tempo
11.
J Exp Biol ; 216(Pt 11): 1991-2000, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23393277

RESUMO

During cold periods ectotherms may improve low temperature tolerance via rapid cold hardening (RCH) over a period of hours and/or long-term cold acclimation (LTCA) during days, weeks or months. However, the effect of duration and the major underlying mechanisms of these processes are still not fully understood. In the present study, the molecular and biochemical responses to RCH (1-3 h) and LTCA (1-3 days) and the corresponding benefits to survival were investigated using the chill-sensitive collembolan Folsomia candida. We investigated osmolyte accumulation, membrane restructuring and transcription of candidate genes as well as survival benefits in response to RCH and LTCA. RCH induced significant upregulation of targeted genes encoding enzymes related to carbohydrate metabolic pathways and genes encoding small and constitutively expressed heat shock proteins (Hsps), indicating that the animals rely on protein protection from a subset of Hsps during RCH and probably also LTCA. The upregulation of genes involved in carbohydrate metabolic processes initiated during RCH was likely responsible for a transient accumulation of myoinositol during LTCA, which may support the protection of protein and membrane function and structure. Membrane restructuring, composed especially of a significantly increased ratio of unsaturated to saturated phospholipid fatty acids seems to be a mechanism supplementary to activation of Hsps and myoinositol accumulation in LTCA. Thus, the moderate increase in cold shock tolerance conferred by RCH seems to be dominated by effects of Hsps, whereas the substantially better cold tolerance achieved after LTCA is dominated by post-transcriptional processes increasing membrane fluidity and cryoprotectant concentration.


Assuntos
Aclimatação , Artrópodes/fisiologia , Animais , Artrópodes/genética , Temperatura Baixa , Crioprotetores/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo
12.
J Exp Biol ; 216(Pt 5): 809-14, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23155086

RESUMO

Ecological relevance and repeatability of results obtained in different laboratories are key issues when assessing thermal tolerance of ectotherms. Traditionally, assays have used acute exposures to extreme temperatures. The outcomes of ecologically more relevant ramping experiments, however, are dependent on the rate of temperature change leading to uncertainty of the causal factor for loss of function. Here, we test the physiological consequences of exposing female Drosophila melanogaster to gradually increasing temperatures in so-called ramping assays. We exposed flies to ramping at rates of 0.06 and 0.1°C min(-1), respectively. Flies were sampled from the two treatments at 28, 30, 32, 34, 36 and 38°C and tested for heat tolerance and expression levels of the heat shock genes hsp23 and hsp70, as well as Hsp70 protein. Heat shock genes were upregulated more with a slow compared with a faster ramping rate, and heat knock-down tolerance was higher in flies exposed to the faster rate. The fact that slow ramping induces a stronger stress response (Hsp expression) compared with faster ramping suggests that slow ramping induces more heat damage at the cellular level due to longer exposure time. This is supported by the observation that fast ramped flies have higher heat knock-down tolerance. Thus we observed both accumulation of thermal damage at the molecular level and heat hardening at the phenotypic level as a consequence of heat exposure. The balance between these processes is dependent on ramping rate leading to the observed variation in thermal tolerance when using different rates.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Aclimatação , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Temperatura Alta , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
13.
Sci Total Environ ; 897: 165334, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419362

RESUMO

The widespread agricultural and industrial emissions of copper-based chemicals have increased copper levels in soils worldwide. Copper contamination can cause a range of toxic effects on soil animals and influence thermal tolerance. However, toxic effects are commonly investigated using simple endpoints (e.g., mortality) and acute tests. Thus, how organisms respond to ecological realistic sub-lethal and chronic exposures across the entire thermal scope of an organism is not known. In this study, we investigated the effects of copper exposure on the thermal performance of a springtail (Folsomia candida), regarding its survival, individual growth, population growth, and the composition of membrane phospholipid fatty acids. Folsomia candida (Collembola) is a typical representative of soil arthropods and a model organism that has been widely used for ecotoxicological studies. In a full-factorial soil microcosm experiment, springtails were exposed to three levels of copper (ca. 17 (control), 436, and 1629 mg/kg dry soil) and ten temperatures from 0 to 30 °C. Results showed that three-week copper exposure at temperatures below 15 °C and above 26 °C negatively influenced the springtail survival. The body growth was significantly lower for the springtails in high-dose copper soils at temperatures above 24 °C. A high copper level reduced the number of juveniles by 50 %, thereby impairing population growth. Both temperature and copper exposure significantly impacted membrane properties. Our results indicated that high-dose copper exposure compromised the tolerance to suboptimal temperatures and decreased maximal performance, whereas medium copper exposure partially reduced the performance at suboptimal temperatures. Overall, copper contamination reduced the thermal tolerance of springtails at suboptimal temperatures, probably by interfering with membrane homeoviscous adaptation. Our results show that soil organisms living in copper-contaminated areas might be more sensitive to thermally stressful periods.


Assuntos
Artrópodes , Poluentes do Solo , Animais , Cobre/toxicidade , Poluentes do Solo/toxicidade , Poluição Ambiental , Solo/química , Reprodução
14.
J Insect Physiol ; 137: 104362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108549

RESUMO

Accurately phenotyping numerous test subjects is essential for most experimental research. Collecting such data can be tedious or time-consuming, and it can be biased or limited using manual observations. The thermal tolerance of small ectotherms is a good example of this type of phenotypic data, and it is widely used to investigate thermal adaptation, acclimation capacity and climate change resilience of small ectotherms. Here, we present the results of automatically generated thermal tolerance data using motion-tracking software on video recordings. The automatization was applied to two different heat tolerance assays, in two Drosophila species and used temperature acclimation to create variation in thermal tolerances. We find similar effect sizes of acclimation and hardening responses between manual and automated approaches, but different absolute tolerance estimates. This discrepancy likely reflects both technical differences in the assay conditions as well as the measured end-points of the assays. We conclude that both methods generate biological meaningful results, which reflect different aspects of the thermal biology, find no evidence of inflated variance in the manually scored assays, but find that automation can increase throughput several times without compromising quality. Further we show that the method can be applied to a wide range of arthropod taxa. We suggest that this automated method is a useful example of high throughput phenotyping. Further, we suggest this approach might be applied to other tedious laboratory traits, such as desiccation or starvation tolerance, with similar benefits to throughput but caution that the interpretation and potential comparison to results using different methodology rely on thorough validation of the assay and the involved biological mechanism.


Assuntos
Aclimatação , Temperatura Alta , Aclimatação/fisiologia , Animais , Automação , Humanos , Insetos , Temperatura
15.
J Comp Physiol B ; 192(3-4): 435-445, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35312816

RESUMO

Tolerance to thermal extremes is critical for the geographic distributions of ectotherm species, many of which are probably going to be modified by future climatic changes. To predict species distributions it is important to understand the potential of species to adapt to changing thermal conditions. Here, we tested whether the thermal tolerance traits of a common freeze-tolerant potworm were correlated with climatic conditions and if adaptation to extreme cold constrains the evolutionary potential for high temperature tolerance. Further, we tested if evolution of thermal tolerance traits is associated with costs in other fitness traits (body size and reproduction). Lastly, we tested if slopes of temperature-survival curves (i.e., the sensitivity distribution) are related to tolerance itself. Using 24 populations of the potworm, Enchytraeus albidus Henle (Enchytraeidae), collected from a wide range of climatic conditions, we established a common garden experiment in which we determined high and low temperature tolerance (using survival as endpoint), average reproductive output and adult body size. Heat tolerance was not related to environmental temperatures whereas lower lethal temperature was about 10 °C lower in Arctic populations than in populations from temperate regions. Reproduction was not related to environmental temperature, but was negatively correlated with cold tolerance. One explanation for the trade-off between cold tolerance and reproduction could be that the more cold-hardy populations need to channel energy to large glycogen reserves at the expense of less energy expenditure for reproduction. Adult body size was negatively related to environmental temperature. Finally, the slopes of temperature-survival curves were significantly correlated with critical temperature limits for heat and cold tolerance; i.e., slopes increased with thermal tolerance. Our results suggest that relatively heat-sensitive populations possess genetic variation, leaving room for improved heat tolerance through evolutionary processes, which may alleviate the effects of a warmer future climate in the Arctic. On the other hand, we observed relatively narrow sensitivity distributions (i.e., less variation) in the most heat tolerant populations. Taken together, our results suggest that both cold and heat tolerance can only be selected for (and improved) until a certain limit has been reached.


Assuntos
Frio Extremo , Oligoquetos , Animais , Regiões Árticas , Temperatura Baixa , Temperatura Alta , Oligoquetos/fisiologia , Solo , Temperatura
16.
Genes (Basel) ; 13(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35052494

RESUMO

Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‱) and low salinities (15‱) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‱, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‱, 15‱ and 5‱) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world.


Assuntos
Aclimatação , Resposta ao Choque Térmico , Temperatura Alta , Mytilus edulis/fisiologia , Pressão Osmótica , Salinidade , Estações do Ano , Animais , Groenlândia
17.
BMC Bioinformatics ; 12: 250, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21693017

RESUMO

BACKGROUND: Normalization of target gene expression, measured by real-time quantitative PCR (qPCR), is a requirement for reducing experimental bias and thereby improving data quality. The currently used normalization approach is based on using one or more reference genes. Yet, this approach extends the experimental work load and suffers from assumptions that may be difficult to meet and to validate. RESULTS: We developed a data driven normalization algorithm (NORMA-Gene). An analysis of the performance of NORMA-Gene compared to reference gene normalization on artificially generated data-sets showed that the NORMA-Gene normalization yielded more precise results under a large range of parameters tested. Furthermore, when tested on three very different real qPCR data-sets NORMA-Gene was shown to be best at reducing variance due to experimental bias in all three data-sets compared to normalization based on the use of reference gene(s). CONCLUSIONS: Here we present the NORMA-Gene algorithm that is applicable to all biological and biomedical qPCR studies, especially those that are based on a limited number of assayed genes. The method is based on a data-driven normalization and is useful for as little as five target genes comprising the data-set. NORMA-Gene does not require the identification and validation of reference genes allowing researchers to focus their efforts on studying target genes of biological relevance.


Assuntos
Algoritmos , Reação em Cadeia da Polimerase/métodos , Expressão Gênica , Perfilação da Expressão Gênica/métodos
18.
Proc Natl Acad Sci U S A ; 105(1): 216-21, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162547

RESUMO

One way animals can counter the effects of climatic extremes is via physiological acclimation, but acclimating to one extreme might decrease performance under different conditions. Here, we use field releases of Drosophila melanogaster on two continents across a range of temperatures to test for costs and benefits of developmental or adult cold acclimation. Both types of cold acclimation had enormous benefits at low temperatures in the field; in the coldest releases only cold-acclimated flies were able to find a resource. However, this advantage came at a huge cost; flies that had not been cold-acclimated were up to 36 times more likely to find food than the cold-acclimated flies when temperatures were warm. Such costs and strong benefits were not evident in laboratory tests where we found no reduction in heat survival of the cold-acclimated flies. Field release studies, therefore, reveal costs of cold acclimation that standard laboratory assays do not detect. Thus, although physiological acclimation may dramatically improve fitness over a narrow set of thermal conditions, it may have the opposite effect once conditions extend outside this range, an increasingly likely scenario as temperature variability increases under global climate change.


Assuntos
Adaptação Fisiológica , Regulação da Temperatura Corporal , Drosophila melanogaster/fisiologia , Aclimatação , Animais , Evolução Biológica , Clima , Temperatura Baixa , Drosophila melanogaster/metabolismo , Feminino , Temperatura Alta , Masculino , Modelos Biológicos , Temperatura , Fatores de Tempo
19.
Ecotoxicology ; 20(3): 563-73, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21336825

RESUMO

Exposure to copper pollution affects reproduction, growth and survival of earthworms. It is known that earthworms can cope with high copper burdens, but the distinction between physiological acclimation and evolutionary heritable changes and associated fitness consequences of the adaption to long-term copper exposure has rarely been studied. To investigate adaptation of earthworm populations of Dendrobaena octaedra to copper contamination, three populations from polluted soil were studied and compared to three unpolluted reference sites. Adult worms were collected at all six sites and cultured in uncontaminated control soil in the laboratory, where life-history traits were studied and F1-generations were produced. The newly hatched F1-generation worms were placed in uncontaminated control or copper-spiked soil to study if the adaptation was due to acclimation or genetic inheritance. This experiment showed that populations from polluted areas generally had a higher individual growth rate, reduced time to maturity, increased reproduction, and also increased mortality compared to the reference populations in both control and copper-spiked soil. The differences in life-history traits indicate that natural selection has resulted in genetic adaptation to copper pollution in the exposed populations. The population growth rates suggest a weak detrimental effect on population growth rate of being exposed to copper for both type of populations, but no sign of cost. On the contrary, estimates of population growth rates integrating all life-history traits showed that copper adapted populations perform on average relatively better than reference populations in both uncontaminated and copper-spiked soil.


Assuntos
Adaptação Fisiológica , Cobre/toxicidade , Oligoquetos/genética , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Animais , Aptidão Genética , Crescimento Demográfico
20.
Front Genet ; 11: 555843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193631

RESUMO

Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA