Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Microbiol ; 113(5): 951-963, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31960524

RESUMO

Ribosomes are absolutely essential for growth but are, moreover, energetically costly to produce. Therefore, it is important to adjust the cellular ribosome levels according to the environmental conditions in order to obtain the highest possible growth rate while avoiding energy wastage on excess ribosome biosynthesis. Here we show, by three different methods, that the ribosomal RNA content of Escherichia coli is downregulated within minutes of the removal of an essential nutrient from the growth medium, or after transcription initiation is inhibited. The kinetics of the ribosomal RNA reduction vary depending on which nutrient the cells are starved for. The number of ribosomes per OD unit of cells is roughly halved after 80 min of starvation for isoleucine or phosphate, while the ribosome reduction is less extensive when the cells are starved for glucose. Collectively, the results presented here support the simple model proposed previously, which identifies the inactive ribosomal subunits as the substrates for degradation, since the most substantial rRNA degradation is observed under the starvation conditions that most directly affect the protein synthesis.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , RNA Bacteriano/química , RNA Ribossômico/química , Aminoácidos/metabolismo , Carbono/metabolismo , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Interação Gene-Ambiente , Cinética , Fosfatos/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , Ribossomos/genética , Ribossomos/metabolismo
2.
Nucleic Acids Res ; 45(2): 793-804, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27903898

RESUMO

Due to its long half-life compared to messenger RNA, bacterial transfer RNA is known as stable RNA. Here, we show that tRNAs become highly unstable as part of Escherichia coli's response to amino acid starvation. Degradation of the majority of cellular tRNA occurs within twenty minutes of the onset of starvation for each of several amino acids. Both the non-cognate and cognate tRNA for the amino acid that the cell is starving for are degraded, and both charged and uncharged tRNA species are affected. The alarmone ppGpp orchestrates the stringent response to amino acid starvation. However, tRNA degradation occurs in a ppGpp-independent manner, as it occurs with similar kinetics in a relaxed mutant. Further, we also observe rapid tRNA degradation in response to rifampicin treatment, which does not induce the stringent response. We propose a unifying model for these observations, in which the surplus tRNA is degraded whenever the demand for protein synthesis is reduced. Thus, the tRNA pool is a highly regulated, dynamic entity. We propose that degradation of surplus tRNA could function to reduce mistranslation in the stressed cell, because it would reduce competition between cognate and near-cognate charged tRNAs at the ribosomal A-site.


Assuntos
Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA de Transferência/genética , Modelos Biológicos , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro , RNA de Transferência/metabolismo
3.
Nucleic Acids Res ; 40(1): 303-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908395

RESUMO

Several viruses utilize programmed ribosomal frameshifting mediated by mRNA pseudoknots in combination with a slippery sequence to produce a well defined stochiometric ratio of the upstream encoded to the downstream-encoded protein. A correlation between the mechanical strength of mRNA pseudoknots and frameshifting efficiency has previously been found; however, the physical mechanism behind frameshifting still remains to be fully understood. In this study, we utilized synthetic sequences predicted to form mRNA pseudoknot-like structures. Surprisingly, the structures predicted to be strongest lead only to limited frameshifting. Two-dimensional gel electrophoresis of pulse labelled proteins revealed that a significant fraction of the ribosomes were frameshifted but unable to pass the pseudoknot-like structures. Hence, pseudoknots can act as ribosomal roadblocks, prohibiting a significant fraction of the frameshifted ribosomes from reaching the downstream stop codon. The stronger the pseudoknot the larger the frameshifting efficiency and the larger its roadblocking effect. The maximal amount of full-length frameshifted product is produced from a structure where those two effects are balanced. Taking ribosomal roadblocking into account is a prerequisite for formulating correct frameshifting hypotheses.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , RNA Mensageiro/química , RNA Polimerases Dirigidas por DNA/metabolismo , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Transcrição Gênica
4.
mBio ; 14(1): e0280522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598190

RESUMO

tRNAs and ribosomal RNAs are often considered stable RNAs. In contrast to this view, we recently proposed that tRNAs are degraded during amino acid starvation and drug-induced transcription inhibition. However, reevaluation of our experimental approach revealed that common RNA extraction methods suffer from alarming extraction and size biases that can lead to gross underestimation of RNA levels in starved Escherichia coli populations. Quantification of tRNAs suffers additional biases due to differing fractions of tRNAs with base modifications in growing versus starved bacteria. Applying an improved methodology, we measured tRNA levels after starvation for amino acids, glucose, phosphate, or ammonium and transcription inhibition by rifampicin. We report that tRNA levels remain largely unaffected in all tested conditions, including several days of starvation. This confirms that tRNAs are remarkably stable RNAs and serves as a cautionary tale about quantification of RNA from cells cultured outside the steady-state growth regime. rRNA, conversely, is extensively degraded during starvation. Thus, E. coli downregulates the translation machinery in response to starvation by reducing the ribosome pool through rRNA degradation, while a high concentration of tRNAs available to supply amino acids to the remaining ribosomes is maintained. IMPORTANCE We show that E. coli tRNAs are remarkably stable during several days of nutrient starvation, although rRNA is degraded extensively under these conditions. The levels of these two major RNA classes are considered to be strongly coregulated at the level of transcription. We demonstrate that E. coli can control the ratio of tRNAs per ribosome under starvation by means of differential degradation rates. The question of tRNA stability in stressed E. coli cells has become subject to debate. Our in-depth analysis of RNA quantification methods reveals hidden technical pitfalls at every step of the analysis, from RNA extraction to target detection and normalization. Most importantly, starved E. coli populations were more resilient to RNA extraction than unstarved populations. The current results underscore that the seemingly trivial task of quantifying an abundant RNA species is not straightforward for cells cultured outside the exponential growth regime.


Assuntos
Escherichia coli , RNA de Transferência , Escherichia coli/genética , Escherichia coli/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismo , Ribossomos/metabolismo , RNA Ribossômico/genética
5.
Elife ; 122023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929938

RESUMO

Many bacteria encode multiple toxin-antitoxin (TA) systems targeting separate, but closely related, cellular functions. The toxin of the Escherichia coli hipBA system, HipA, is a kinase that inhibits translation via phosphorylation of glutamyl-tRNA synthetase. Enteropathogenic E. coli O127:H6 encodes the hipBA-like, tripartite TA system; hipBST, in which the HipT toxin specifically targets the tryptophanyl-tRNA synthetase, TrpS. Notably, in the tripartite system, the function as antitoxin has been taken over by the third protein, HipS, but the molecular details of how activity of HipT is inhibited remain poorly understood. Here, we show that HipBST is structurally different from E. coli HipBA and that the unique HipS protein, which is homologous to the N-terminal subdomain of HipA, inhibits the kinase through insertion of a conserved Trp residue into the active site. We also show how auto-phosphorylation at two conserved sites in the kinase toxin serve different roles and affect the ability of HipS to neutralize HipT. Finally, solution structural studies show how phosphorylation affects overall TA complex flexibility.


Assuntos
Antitoxinas , Proteínas de Escherichia coli , Sistemas Toxina-Antitoxina , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina/genética , Fosforilação , Antitoxinas/metabolismo
6.
mSphere ; 7(3): e0100621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35440180

RESUMO

The stationary phase is the general term for the state a bacterial culture reaches when no further increase in cell mass occurs due to exhaustion of nutrients in the growth medium. Depending on the type of nutrient that is first depleted, the metabolic state of the stationary phase cells may vary greatly, and the subsistence strategies that best support cell survival may differ. As ribosomes play a central role in bacterial growth and energy expenditure, ribosome preservation is a key element of such strategies. To investigate the degree of ribosome preservation during long-term starvation, we compared the dynamics of rRNA levels of carbon-starved and phosphorus-starved Escherichia coli cultures for up to 28 days. The starved cultures' contents of full-length 16S and 23S rRNA decreased as the starvation proceeded in both cases, and phosphorus starvation resulted in much more rapid rRNA degradation than carbon starvation. Bacterial survival and regrowth kinetics were also quantified. Upon replenishment of the nutrient in question, carbon-starved cells resumed growth faster than cells starved for phosphate for the equivalent amount of time, and for both conditions, the lag time increased with the starvation time. While these results are in accordance with the hypothesis that cells with a larger ribosome pool recover more readily upon replenishment of nutrients, we also observed that the lag time kept increasing with increasing starvation time, also when the amount of rRNA per viable cell remained constant, highlighting that lag time is not a simple function of ribosome content under long-term starvation conditions. IMPORTANCE The exponential growth of bacterial populations is punctuated by long or short periods of starvation lasting from the point of nutrient exhaustion until nutrients are replenished. To understand the consequences of long-term starvation for Escherichia coli cells, we performed month-long carbon and phosphorus starvation experiments and measured three key phenotypes of the cultures, namely, the survival of the cells, the time needed for them to resume growth after nutrient replenishment, and the levels of intact rRNA preserved in the cultures. The starved cultures' concentration of rRNA dropped with starvation time, as did cell survival, while the lag time needed for regrowth increased. While all three phenotypes were more severely affected during starvation for phosphorus than for carbon, our results demonstrate that neither survival nor lag time is correlated with ribosome content in a straightforward manner.


Assuntos
Carbono , Fosfatos , Carbono/metabolismo , Escherichia coli/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , RNA Ribossômico , Ribossomos/metabolismo
7.
Proc Natl Acad Sci U S A ; 104(49): 19410-5, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18032607

RESUMO

Escherichia coli strains with inactivated rluD genes were previously found to lack the conserved pseudouridines in helix 69 of 23S ribosomal RNA and to grow slowly. A suppressor mutant was isolated with a near normal growth rate that had changed the conserved Glu-172 codon to a Lys codon in prfB, encoding translation termination factor RF2. When nonsense suppression in strains with all combinations of prfB(+)/prfB(E172K) and rluD(+)/rluD::cat was analyzed, misreading of all three stop codons as sense codons was found to be increased by rluD inactivation: Nonsense suppression was increased 2-fold at UAG codons, 9-fold at UAA, and 14-fold at UGA. The increased read-through at UGA corresponds to reading UGA as a sense codon in 30% of the cases. In contrast, the accuracy of reading sense codons appeared unaffected by loss of rluD. When the inactivated rluD gene was combined with the altered prfB, wild-type levels of termination were restored at UAA codons and termination was more efficient than wild type at UGA. These results strongly suggest that at least one of the helix 69 pseudouridines has a function in translation termination. To our knowledge, this is the first described function for a ribosomal RNA pseudouridine modification.


Assuntos
Terminação Traducional da Cadeia Peptídica , Pseudouridina/metabolismo , RNA Ribossômico 23S/metabolismo , Códon sem Sentido/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Hidroliases/genética , Mutação , Conformação de Ácido Nucleico , Fatores de Terminação de Peptídeos/genética , Fenótipo , RNA Ribossômico 23S/química , Supressão Genética
8.
J Vis Exp ; (126)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28872118

RESUMO

Transfer RNA (tRNA) is an essential part of the translational machinery in any organism. tRNAs bind and transfer amino acids to the translating ribosome. The relative levels of different tRNAs, and the ratio of aminoacylated tRNA to total tRNA, known as the charging level, are important factors in determining the accuracy and speed of translation. Therefore, the abundance and charging levels of tRNAs are important variables to measure when studying protein synthesis, for example under various stress conditions. Here, we describe a method for harvesting tRNA and directly measuring both the relative abundance and the absolute charging level of specific tRNA species in Escherichia coli. The tRNA is harvested in such a way that the labile bond between the tRNA and its amino acid is preserved. The RNA is then subjected to gel electrophoresis and Northern blotting, which results in separation of the charged and uncharged tRNAs. The levels of specific tRNAs in different samples can be compared due to the addition of spike-in cells for normalization. Prior to RNA purification, we add 5% of E. coli cells that overproduce the rare tRNAselC to each sample. The amount of the tRNA species of interest in a sample is then normalized to the amount of tRNAselC in the same sample. Addition of spike-in cells prior to RNA purification has the advantage over addition of purified spike-in RNAs that it also accounts for any differences in cell lysis efficiency between samples.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética
9.
mBio ; 8(6)2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233898

RESUMO

Bacterial persisters are phenotypic variants that survive antibiotic treatment in a dormant state and can be formed by multiple pathways. We recently proposed that the second messenger (p)ppGpp drives Escherichia coli persister formation through protease Lon and activation of toxin-antitoxin (TA) modules. This model found considerable support among researchers studying persisters but also generated controversy as part of recent debates in the field. In this study, we therefore used our previous work as a model to critically examine common experimental procedures to understand and overcome the inconsistencies often observed between results of different laboratories. Our results show that seemingly simple antibiotic killing assays are very sensitive to variations in culture conditions and bacterial growth phase. Additionally, we found that some assay conditions cause the killing of antibiotic-tolerant persisters via induction of cryptic prophages. Similarly, the inadvertent infection of mutant strains with bacteriophage ϕ80, a notorious laboratory contaminant, apparently caused several of the phenotypes that we reported in our previous studies. We therefore reconstructed all infected mutants and probed the validity of our model of persister formation in a refined assay setup that uses robust culture conditions and unravels the dynamics of persister cells through all bacterial growth stages. Our results confirm the importance of (p)ppGpp and Lon but no longer support a role of TA modules in E. coli persister formation under unstressed conditions. We anticipate that the results and approaches reported in our study will lay the ground for future work in the field.IMPORTANCE The recalcitrance of antibiotic-tolerant persister cells is thought to cause relapsing infections and antibiotic treatment failure in various clinical setups. Previous studies identified multiple genetic pathways involved in persister formation but also revealed reproducibility problems that sparked controversies about adequate tools to study persister cells. In this study, we unraveled how typical antibiotic killing assays often fail to capture the biology of persisters and instead give widely differing results based on poorly controlled experimental parameters and artifacts caused by cryptic as well as contaminant prophages. We therefore established a new, robust assay that enabled us to follow the dynamics of persister cells through all growth stages of bacterial cultures without distortions by bacteriophages. This system also favored adequate comparisons of mutant strains with aberrant growth phenotypes. We anticipate that our results will contribute to a robust, common basis for future studies on the formation and eradication of antibiotic-tolerant persisters.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Viabilidade Microbiana/efeitos dos fármacos , Prófagos/genética , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/virologia , Fenômenos Fisiológicos Bacterianos , Bacteriófagos/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Testes de Sensibilidade Microbiana , Técnicas Microbiológicas/normas , Prófagos/fisiologia , Protease La/metabolismo , Pirofosfatases/metabolismo , Reprodutibilidade dos Testes , Sistemas Toxina-Antitoxina/fisiologia
10.
J Mol Biol ; 354(1): 16-24, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16236318

RESUMO

During mRNA translation, synonymous codons for one amino acid are often read by different isoaccepting tRNAs. The theory of selective tRNA charging predicts greatly varying percentages of aminoacylation among isoacceptors in cells starved for their common amino acid. It also predicts major changes in tRNA charging patterns upon concentration changes of single isoacceptors, which suggests a novel type of translational control of gene expression. We therefore tested the theory by measuring with Northern blots the charging of Leu-tRNAs in Escherichia coli under Leu limitation in response to over expression of tRNA(GAG)(Leu). As predicted, the charged level of tRNA(GAG)(Leu) increased and the charged levels of four other Leu isoacceptors decreased or remained unchanged, but the charged level of tRNA(UAG)(Leu) increased unexpectedly. To remove this apparent inconsistency between theory and experiment we postulated a previously unknown common codon for tRNA(GAG)(Leu) and tRNA(UAG)(Leu). Subsequently, we demonstrated that the tRNA(GAG)(Leu) codon CUU is, in fact, read also by tRNA(UAG)(Leu), due to a uridine-5-oxyacetic acid modification.


Assuntos
Códon/genética , Escherichia coli/genética , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Leucina/metabolismo , Anticódon/química , Northern Blotting , Códon/metabolismo , Aminoacil-RNA de Transferência/genética , RNA de Transferência de Leucina/genética
11.
Proc Natl Acad Sci U S A ; 104(14): 5830-5, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17389398

RESUMO

Programmed ribosomal frameshifting is often used by viral pathogens including HIV. Slippery sequences present in some mRNAs cause the ribosome to shift reading frame. The resulting protein is thus encoded by one reading frame upstream from the slippery sequence and by another reading frame downstream from the slippery sequence. Although the mechanism is not well understood, frameshifting is known to be stimulated by an mRNA structure such as a pseudoknot. Here, we show that the efficiency of frameshifting relates to the mechanical strength of the pseudoknot. Two pseudoknots derived from the Infectious Bronchitis Virus were used, differing by one base pair in the first stem. In Escherichia coli, these two pseudoknots caused frameshifting frequencies that differed by a factor of two. We used optical tweezers to unfold the pseudoknots. The pseudoknot giving rise to the highest degree of frameshifting required a nearly 2-fold larger unfolding force than the other. The observed energy difference cannot be accounted for by any existing model. We propose that the degree of ribosomal frameshifting is related to the mechanical strength of RNA pseudoknots. Our observations support the "9 A model" that predicts some physical barrier is needed to force the ribosome into the -1 frame. Also, our findings support the recent observation made by cryoelectron microscopy that mechanical interaction between a ribosome and a pseudoknot causes a deformation of the A-site tRNA. The result has implications for the understanding of genetic regulation, reading frame maintenance, tRNA movement, and unwinding of mRNA secondary structures by ribosomes.


Assuntos
Mutação da Fase de Leitura/genética , Mudança da Fase de Leitura do Gene Ribossômico , RNA Mensageiro/química , Ribossomos/genética , Ribossomos/metabolismo , Sequência de Bases , Fenômenos Biomecânicos , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Pinças Ópticas , Plasmídeos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Viral/química , RNA Viral/genética , Ribossomos/química , Termodinâmica
12.
EMBO Rep ; 6(2): 151-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15678157

RESUMO

Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins.


Assuntos
Aminoácidos/metabolismo , RNA de Transferência/metabolismo , Anticódon , Códon , Escherichia coli K12/genética , Escherichia coli K12/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA