Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Nanotechnol ; 18(11): 1273-1280, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37500772

RESUMO

Spintronic nano-synapses and nano-neurons perform neural network operations with high accuracy thanks to their rich, reproducible and controllable magnetization dynamics. These dynamical nanodevices could transform artificial intelligence hardware, provided they implement state-of-the-art deep neural networks. However, there is today no scalable way to connect them in multilayers. Here we show that the flagship nano-components of spintronics, magnetic tunnel junctions, can be connected into multilayer neural networks where they implement both synapses and neurons thanks to their magnetization dynamics, and communicate by processing, transmitting and receiving radiofrequency signals. We build a hardware spintronic neural network composed of nine magnetic tunnel junctions connected in two layers, and show that it natively classifies nonlinearly separable radiofrequency inputs with an accuracy of 97.7%. Using physical simulations, we demonstrate that a large network of nanoscale junctions can achieve state-of-the-art identification of drones from their radiofrequency transmissions, without digitization and consuming only a few milliwatts, which constitutes a gain of several orders of magnitude in power consumption compared to currently used techniques. This study lays the foundation for deep, dynamical, spintronic neural networks.

2.
Neural Comput ; 23(10): 2599-625, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21671785

RESUMO

We propose a new estimation method for the characterization of the Hodgkin-Huxley formalism. This method is an alternative technique to the classical estimation methods associated with voltage clamp measurements. It uses voltage clamp type recordings, but is based on the differential evolution algorithm. The parameters of an ionic channel are estimated simultaneously, such that the usual approximations of classical methods are avoided and all the parameters of the model, including the time constant, can be correctly optimized. In a second step, this new estimation technique is applied to the automated tuning of neuromimetic analog integrated circuits designed by our research group. We present a tuning example of a fast spiking neuron, which reproduces the frequency-current characteristics of the reference data, as well as the membrane voltage behavior. The final goal of this tuning is to interconnect neuromimetic chips as neural networks, with specific cellular properties, for future theoretical studies in neuroscience.


Assuntos
Algoritmos , Modelos Neurológicos , Neurônios/fisiologia , Animais , Humanos
3.
Front Neurosci ; 13: 377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068781

RESUMO

Neurological diseases can be studied by performing bio-hybrid experiments using a real-time biomimetic Spiking Neural Network (SNN) platform. The Hodgkin-Huxley model offers a set of equations including biophysical parameters which can serve as a base to represent different classes of neurons and affected cells. Also, connecting the artificial neurons to the biological cells would allow us to understand the effect of the SNN stimulation using different parameters on nerve cells. Thus, designing a real-time SNN could useful for the study of simulations of some part of the brain. Here, we present a different approach to optimize the Hodgkin-Huxley equations adapted for Field Programmable Gate Array (FPGA) implementation. The equations of the conductance have been unified to allow the use of same functions with different parameters for all ionic channels. The low resources and high-speed implementation also include features, such as synaptic noise using the Ornstein-Uhlenbeck process and different synapse receptors including AMPA, GABAa, GABAb, and NMDA receptors. The platform allows real-time modification of the neuron parameters and can output different cortical neuron families like Fast Spiking (FS), Regular Spiking (RS), Intrinsically Bursting (IB), and Low Threshold Spiking (LTS) neurons using a Digital to Analog Converter (DAC). Gaussian distribution of the synaptic noise highlights similarities with the biological noise. Also, cross-correlation between the implementation and the model shows strong correlations, and bifurcation analysis reproduces similar behavior compared to the original Hodgkin-Huxley model. The implementation of one core of calculation uses 3% of resources of the FPGA and computes in real-time 500 neurons with 25,000 synapses and synaptic noise which can be scaled up to 15,000 using all resources. This is the first step toward neuromorphic system which can be used for the simulation of bio-hybridization and for the study of neurological disorders or the advanced research on neuroprosthesis to regain lost function.

4.
Nat Commun ; 8: 14736, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368007

RESUMO

In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.


Assuntos
Eletricidade , Ferro/química , Redes Neurais de Computação , Fatores de Tempo
5.
Front Neurosci ; 10: 67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013936

RESUMO

Neural prostheses based on electrical microstimulation offer promising perspectives to restore functions following lesions of the central nervous system (CNS). They require the identification of appropriate stimulation sites and the coordination of their activation to achieve the restoration of functional activity. On the long term, a challenging perspective is to control microstimulation by artificial neural networks hybridized to the living tissue. Regarding the use of this strategy to restore locomotor activity in the spinal cord, to date, there has been no proof of principle of such hybrid approach driving intraspinal microstimulation (ISMS). Here, we address a first step toward this goal in the neonatal rat spinal cord isolated ex vivo, which can display locomotor-like activity while offering an easy access to intraspinal circuitry. Microelectrode arrays were inserted in the lumbar region to determine appropriate stimulation sites to elicit elementary bursting patterns on bilateral L2/L5 ventral roots. Two intraspinal sites were identified at L1 level, one on each side of the spinal cord laterally from the midline and approximately at a median position dorso-ventrally. An artificial CPG implemented on digital integrated circuit (FPGA) was built to generate alternating activity and was hybridized to the living spinal cord to drive electrical microstimulation on these two identified sites. Using this strategy, sustained left-right and flexor-extensor alternating activity on bilateral L2/L5 ventral roots could be generated in either whole or thoracically transected spinal cords. These results are a first step toward hybrid artificial/biological solutions based on electrical microstimulation for the restoration of lost function in the injured CNS.

6.
Front Neurosci ; 9: 51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784849

RESUMO

Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use.

7.
Front Neurosci ; 7: 215, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319408

RESUMO

This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin-Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development.

8.
Front Neurosci ; 5: 134, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163213

RESUMO

Nowadays, many software solutions are currently available for simulating neuron models. Less conventional than software-based systems, hardware-based solutions generally combine digital and analog forms of computation. In previous work, we designed several neuromimetic chips, including the Galway chip that we used for this paper. These silicon neurons are based on the Hodgkin-Huxley formalism and they are optimized for reproducing a large variety of neuron behaviors thanks to tunable parameters. Due to process variation and device mismatch in analog chips, we use a full-custom fitting method in voltage-clamp mode to tune our neuromimetic integrated circuits. By comparing them with experimental electrophysiological data of these cells, we show that the circuits can reproduce the main firing features of cortical cell types. In this paper, we present the experimental measurements of our system which mimic the four most prominent biological cells: fast spiking, regular spiking, intrinsically bursting, and low-threshold spiking neurons into analog neuromimetic integrated circuit dedicated to cortical neuron simulations. This hardware and software platform will allow to improve the hybrid technique, also called "dynamic-clamp," that consists of connecting artificial and biological neurons to study the function of neuronal circuits.

9.
Front Neurosci ; 5: 73, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747754

RESUMO

Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

10.
IEEE Trans Neural Netw ; 21(9): 1511-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20570768

RESUMO

Neuronal variability has been thought to play an important role in the brain. As the variability mainly comes from the uncertainty in biophysical mechanisms, stochastic neuron models have been proposed for studying how neurons compute with noise. However, most papers are limited to simulating stochastic neurons in a digital computer. The speed and the efficiency are thus limited especially when a large neuronal network is of concern. This brief explores the feasibility of simulating the stochastic behavior of biological neurons in a very large scale integrated (VLSI) system, which implements a programmable and configurable Hodgkin-Huxley model. By simply injecting noise to the VLSI neuron, various stochastic behaviors observed in biological neurons are reproduced realistically in VLSI. The noise-induced variability is further shown to enhance the signal modulation of a neuron. These results point toward the development of analog VLSI systems for exploring the stochastic behaviors of biological neuronal networks in large scale.


Assuntos
Algoritmos , Simulação por Computador/normas , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Processos Estocásticos , Animais , Artefatos , Eletrônica/instrumentação , Eletrônica/métodos , Humanos , Fatores de Tempo
11.
Network ; 17(3): 211-33, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17162612

RESUMO

We introduce and test a system for simulating networks of conductance-based neuron models using analog circuits. At the single-cell level, we use custom-designed analog circuits (ASICs) that simulate two types of spiking neurons based on Hodgkin-Huxley like dynamics: "regular spiking" excitatory neurons with spike-frequency adaptation, and "fast spiking" inhibitory neurons. Synaptic interactions are mediated by conductance-based synaptic currents described by kinetic models. Connectivity and plasticity rules are implemented digitally through a real time interface between a computer and a PCI board containing the ASICs. We show a prototype system of a few neurons interconnected with synapses undergoing spike-timing dependent plasticity (STDP), and compare this system with numerical simulations. We use this system to evaluate the effect of parameter dispersion on the behavior of small circuits of neurons. It is shown that, although the exact spike timings are not precisely emulated by the ASIC neurons, the behavior of small networks with STDP matches that of numerical simulations. Thus, this mixed analog-digital architecture provides a valuable tool for real-time simulations of networks of neurons with STDP. They should be useful for any real-time application, such as hybrid systems interfacing network models with biological neurons.


Assuntos
Potenciais de Ação/fisiologia , Conversão Análogo-Digital , Simulação por Computador , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Redes Neurais de Computação , Interface Usuário-Computador , Córtex Visual/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA