Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 14(3): e1007271, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29529025

RESUMO

Forkhead box (FOXO) proteins are evolutionarily conserved, stress-responsive transcription factors (TFs) that can promote or counteract cell death. Mutations in FOXO genes are implicated in numerous pathologies, including age-dependent neurodegenerative disorders, such as Parkinson's disease (PD). However, the complex regulation and downstream mechanisms of FOXOs present a challenge in understanding their roles in the pathogenesis of PD. Here, we investigate the involvement of FOXO in the death of dopaminergic (DA) neurons, the key pathological feature of PD, in Drosophila. We show that dFOXO null mutants exhibit a selective loss of DA neurons in the subgroup crucial for locomotion, the protocerebral anterior medial (PAM) cluster, during development as well as in adulthood. PAM neuron-targeted adult-restricted knockdown demonstrates that dFOXO in adult PAM neurons tissue-autonomously promotes neuronal survival during aging. We further show that dFOXO and the bHLH-TF 48-related-2 (FER2) act in parallel to protect PAM neurons from different forms of cellular stress. Remarkably, however, dFOXO and FER2 share common downstream processes leading to the regulation of autophagy and mitochondrial morphology. Thus, overexpression of one can rescue the loss of function of the other. These results indicate a role of dFOXO in neuroprotection and highlight the notion that multiple genetic and environmental factors interact to increase the risk of DA neuron degeneration and the development of PD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neuroproteção , Doença de Parkinson/patologia , Animais , Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sobrevivência Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Fatores de Transcrição Forkhead/genética , Mitocôndrias/metabolismo , Mutação , Doença de Parkinson/metabolismo
2.
PLoS Genet ; 10(10): e1004718, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340742

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas de Caenorhabditis elegans/biossíntese , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Estresse Oxidativo/genética , Doença de Parkinson/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster , Regulação da Expressão Gênica , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
3.
Development ; 139(6): 1095-104, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22318230

RESUMO

During embryonic development, changes in cell cycle kinetics have been associated with neurogenesis. This observation suggests that specific cell cycle regulators may be recruited to modify cell cycle dynamics and influence the decision between proliferation and differentiation. In the present study, we investigate the role of core positive cell cycle regulators, the CDC25 phosphatases, in this process. We report that, in the developing chicken spinal cord, only CDC25A is expressed in domains where neural progenitors undergo proliferative self-renewing divisions, whereas the combinatorial expression of CDC25A and CDC25B correlates remarkably well with areas where neurogenesis occurs. We also establish that neural progenitors expressing both CDC25A and CDC25B have a shorter G2 phase than those expressing CDC25A alone. We examine the functional relevance of these correlations using an RNAi-based method that allows us to knock down CDC25B efficiently and specifically. Reducing CDC25B expression results in a specific lengthening of the G2 phase, whereas the S-phase length and the total cell cycle time are not significantly modified. This modification of cell cycle kinetics is associated with a reduction in neuron production that is due to the altered conversion of proliferating neural progenitor cells to post-mitotic neurons. Thus, expression of CDC25B in neural progenitors has two functions: to change cell cycle kinetics and in particular G2-phase length and also to promote neuron production, identifying new roles for this phosphatase during neurogenesis.


Assuntos
Fase G2 , Sistema Nervoso/embriologia , Células-Tronco Neurais/citologia , Neurogênese , Medula Espinal/embriologia , Fosfatases cdc25/metabolismo , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Embrião de Galinha , Células-Tronco Neurais/fisiologia , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Medula Espinal/citologia , Fosfatases cdc25/biossíntese
4.
Dev Biol ; 362(2): 254-62, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22200593

RESUMO

A small population of neuroendocrine cells in the rostral hypothalamus and basal forebrain is the key regulator of vertebrate reproduction. They secrete gonadotropin-releasing hormone (GnRH-1), communicate with many areas of the brain and integrate multiple inputs to control gonad maturation, puberty and sexual behavior. In humans, disruption of the GnRH-1 system leads to hypogonadotropic gonadism and Kallmann syndrome. Unlike other neurons in the central nervous system, GnRH-1 neurons arise in the periphery, however their embryonic origin is controversial, and the molecular mechanisms that control their initial specification are not clear. Here, we provide evidence that in chick GnRH-1 neurons originate in the olfactory placode, where they are specified shortly after olfactory sensory neurons. FGF signaling is required and sufficient to induce GnRH-1 neurons, while retinoic acid represses their formation. Both pathways regulate and antagonize each other and our results suggest that the timing of signaling is critical for normal GnRH-1 neuron formation. While Kallmann's syndrome has generally been attributed to a failure of GnRH-1 neuron migration due to impaired FGF signaling, our findings suggest that in at least some Kallmann patients these neurons may never be specified. In addition, this study highlights the intimate embryonic relationship between GnRH-1 neurons and their targets and modulators in the adult.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Síndrome de Kallmann/embriologia , Células Neuroepiteliais/citologia , Neurônios/citologia , Transdução de Sinais/fisiologia , Animais , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Síndrome de Kallmann/metabolismo , Microscopia Confocal , Neurônios/metabolismo , Tretinoína/metabolismo
5.
Methods Mol Biol ; 2130: 207-219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33284447

RESUMO

Live imaging of the molecular clockwork within the circadian pacemaker neurons offers the unique possibility to study complex interactions between the molecular clock and neuronal communication within individual neurons and throughout the entire circadian circuitry. Here we describe how to establish brain explants and dissociated neuron culture from Drosophila larvae, guidelines for time-lapse fluorescence microscopy, and the method of image analysis. This approach enables the long-term monitoring of fluorescence signals of circadian reporters at single-cell resolution and can be also applicable to analyze real-time expression of other fluorescent probes in Drosophila neurons.


Assuntos
Ritmo Circadiano , Neurônios/citologia , Imagem com Lapso de Tempo/métodos , Animais , Células Cultivadas , Drosophila melanogaster , Microscopia de Fluorescência/métodos , Neurônios/fisiologia , Cultura Primária de Células/métodos
6.
Dev Biol ; 327(2): 478-86, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19162002

RESUMO

In Xenopus, the animal cap is very sensitive to BMP antagonists, which result in neuralization. In chick, however, only cells at the border of the neural plate can be neuralized by BMP inhibition. Here we compare the two systems. BMP antagonists can induce neural plate border markers in both ventral Xenopus epidermis and non-neural chick epiblast. However, BMP antagonism can only neuralize ectodermal cells when the BMP-inhibited cells form a continuous trail connecting them to the neural plate or its border, suggesting that homeogenetic neuralizing factors can only travel between BMP-inhibited cells. Xenopus animal cap explants contain cells fated to contribute to the neural plate border and even to the anterior neural plate, explaining why they are so easily neuralized by BMP-inhibition. Furthermore, chick explants isolated from embryonic epiblast behave like Xenopus animal caps and express border markers. We propose that the animal cap assay in Xenopus and explant assays in the chick are unsuitable for studying instructive signals in neural induction.


Assuntos
Biomarcadores/metabolismo , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Comunicação Celular/fisiologia , Indução Embrionária/fisiologia , Placa Neural/fisiologia , Transplantes , Xenopus laevis , Animais , Bioensaio/métodos , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião de Galinha , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Placa Neural/citologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomia & histologia , Xenopus laevis/embriologia
7.
J Vis Exp ; (131)2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29443100

RESUMO

The circadian pacemaker circuit orchestrates rhythmic behavioral and physiological outputs coordinated with environmental cues, such as day/night cycles. The molecular clock within each pacemaker neuron generates circadian rhythms in gene expression, which underlie the rhythmic neuronal functions essential to the operation of the circuit. Investigation of the properties of the individual molecular oscillators in different subclasses of pacemaker neurons and their interaction with neuronal signaling yields a better understanding of the circadian pacemaker circuit. Here, we present a time-lapse fluorescent microscopy approach developed to monitor the molecular clockwork in clock neurons of cultured Drosophila larval brain. This method allows the multi-day recording of the rhythms of genetically encoded fluorescent circadian reporters at single-cell resolution. This setup can be combined with pharmacological manipulations to closely analyze real-time response of the molecular clock to various compounds. Beyond circadian rhythms, this multipurpose method in combination with powerful Drosophila genetic techniques offers the possibility to study diverse neuronal or molecular processes in live brain tissue.


Assuntos
Relógios Circadianos/fisiologia , Drosophila/fisiologia , Animais , Proteínas de Drosophila/fisiologia , Fluorescência , Larva
8.
Front Cell Neurosci ; 11: 317, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075180

RESUMO

Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian circuit to generate robust 24-h rhythms.

9.
Sci Rep ; 7: 41560, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134281

RESUMO

Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Regulação da Expressão Gênica , Imagem Molecular , Neuropeptídeos/metabolismo , Transcrição Gênica , Animais , Biomarcadores , Encéfalo/metabolismo , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Neurônios/metabolismo , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA