Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(12): 5633-5642, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819892

RESUMO

Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the housekeeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization.


Assuntos
Lagartos/genética , Pigmentação da Pele/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/fisiologia , Animais , Carotenoides/genética , Carotenoides/metabolismo , Cor , Dioxigenases/genética , Lagartos/metabolismo , Pigmentação/genética , Polimorfismo Genético/genética , Pterinas/metabolismo
2.
J Fish Biol ; 101(2): 408-413, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34590319

RESUMO

Human-mediated habitat fragmentation has been proposed as the main factor driving hybridization between the sympatric migratory European shads Alosa alosa and Alosa fallax, which has co-occurred with substantial population declines in A. alosa. In river systems across Great Britain, shad are negatively affected by navigation weirs constructed in the last 150 years that impede their spawning migrations. Consequently, the aim here was to assess the impact of human disturbances on the genetic introgression and population structure of shad in Great Britain through genotyping 119 Alosa spp. using 24 microsatellite loci.


Assuntos
Peixes , Genética Populacional , Animais , Ecossistema , Peixes/genética , Humanos , Hibridização Genética , Repetições de Microssatélites , Rios
3.
Proc Biol Sci ; 285(1888)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282656

RESUMO

Discrete colour morphs coexisting within a single population are common in nature. In a broad range of organisms, sympatric colour morphs often display major differences in other traits, including morphology, physiology or behaviour. Despite the repeated occurrence of this phenomenon, our understanding of the genetics that underlie multi-trait differences and the factors that promote the long-term maintenance of phenotypic variability within a freely interbreeding population are incomplete. Here, we investigated the genetic basis of red and black head colour in the Gouldian finch (Erythrura gouldiae), a classic polymorphic system in which naturally occurring colour morphs also display differences in aggressivity and reproductive success. We show that the candidate locus is a small (approx. 70 kb) non-coding region mapping to the Z chromosome near the Follistatin (FST) gene. Unlike recent findings in other systems where phenotypic morphs are explained by large inversions containing hundreds of genes (so-called supergenes), we did not identify any structural rearrangements between the two haplotypes using linked-read sequencing technology. Nucleotide divergence between the red and black alleles was high when compared to the remainder of the Z chromosome, consistent with their maintenance as balanced polymorphisms over several million years. Our results illustrate how pleiotropic phenotypes can arise from simple genetic variation, probably regulatory in nature.


Assuntos
Proteínas Aviárias/genética , Folistatina/genética , Pigmentação/genética , Polimorfismo Genético/fisiologia , Cromossomos Sexuais/genética , Aves Canoras/fisiologia , Animais , Proteínas Aviárias/metabolismo , Cor , Tentilhões/crescimento & desenvolvimento , Tentilhões/fisiologia , Folistatina/metabolismo , Análise de Sequência de RNA , Aves Canoras/genética
4.
Mol Ecol ; 27(6): 1457-1478, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359877

RESUMO

Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.


Assuntos
Aberrações Cromossômicas , Regulação da Expressão Gênica/genética , Especiação Genética , Isolamento Reprodutivo , Animais , Frequência do Gene , Masculino , Modelos Genéticos , Locos de Características Quantitativas/genética , Coelhos , Testículo/metabolismo , Sequenciamento Completo do Genoma
5.
Proc Natl Acad Sci U S A ; 106(34): 14450-5, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19667207

RESUMO

Adaptive modifications of heteromeric proteins may involve genetically based changes in single subunit polypeptides or parallel changes in multiple genes that encode distinct, interacting subunits. Here we investigate these possibilities by conducting a combined evolutionary and functional analysis of duplicated globin genes in natural populations of deer mice (Peromyscus maniculatus) that are adapted to different elevational zones. A multilocus analysis of nucleotide polymorphism and linkage disequilibrium revealed that high-altitude adaptation of deer mouse hemoglobin involves parallel functional differentiation at multiple unlinked gene duplicates: two alpha-globin paralogs on chromosome 8 and two beta-globin paralogs on chromosome 1. Differences in O(2)-binding affinity of the alternative beta-chain hemoglobin isoforms were entirely attributable to allelic differences in sensitivity to 2,3-diphosphoglycerate (DPG), an allosteric cofactor that stabilizes the low-affinity, deoxygenated conformation of the hemoglobin tetramer. The two-locus beta-globin haplotype that predominates at high altitude is associated with suppressed DPG-sensitivity (and hence, increased hemoglobin-O(2) affinity), which enhances pulmonary O(2) loading under hypoxia. The discovery that allelic differences in DPG-sensitivity contribute to adaptive variation in hemoglobin-O(2) affinity illustrates the value of integrating evolutionary analyses of sequence variation with mechanistic appraisals of protein function. Investigation into the functional significance of the deer mouse beta-globin polymorphism was motivated by the results of population genetic analyses which revealed evidence for a history of divergent selection between elevational zones. The experimental measures of O(2)-binding properties corroborated the tests of selection by demonstrating a functional difference between the products of alternative alleles.


Assuntos
Altitude , Evolução Molecular , Hemoglobinas/genética , Peromyscus/genética , Adaptação Fisiológica/genética , Animais , Sítios de Ligação/genética , Clonagem Molecular , Colorado , Duplicação Gênica , Geografia , Haplótipos , Hemoglobinas/química , Hemoglobinas/metabolismo , Desequilíbrio de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxigênio/metabolismo , Peromyscus/classificação , Peromyscus/fisiologia , Polimorfismo Genético , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Especificidade da Espécie , Globinas beta/química , Globinas beta/genética , Globinas beta/metabolismo
6.
PLoS One ; 17(6): e0259726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696379

RESUMO

To date basic visualization of sequence alignments have largely focused on displaying per-site columns of nucleotide, or amino acid, residues along with associated frequency summarizations. The persistence of this tendency to the recent tools designed for viewing mapped read data indicates that such a perspective not only provides a reliable visualization of per-site alterations, but also offers implicit reassurance to the end-user in relation to data accessibility. However, the initial insight gained is limited, something that is especially true when viewing alignments consisting of many sequences representing differing factors such as location, date and subtype. A basic alignment viewer can have potential to increase initial insight through visual enhancement, whilst not delving into the realms of complex sequence analysis. We present CView, a visualizer that expands on the per-site representation of residues through the incorporation of a dynamic network that is based on the summarization of diversity present across different regions of the alignment. Within the network, nodes are based on the clustering of sequence fragments that span windows placed consecutively along the alignment. Edges are placed between nodes of neighbouring windows where they share sequence identification(s), i.e. different regions of the same sequence(s). Thus, if a node is selected on the network, then the relationship that sequences passing through that node have to other regions of diversity within the alignment can be observed through path tracing. In addition to augmenting visual insight, CView provides export features including variant summarization, per-site residue and kmer frequencies, consensus sequence, alignment dissection as well as clustering; each useful across a range of research areas. The software has been designed to be user friendly, intuitive and interactive. It is open source and an executable jar, source code, quick start, usage tutorial and test data are available (under the GNU General Public License) from https://sourceforge.net/projects/cview/.


Assuntos
Software , Alinhamento de Sequência , Análise de Sequência
7.
Ecol Evol ; 12(5): e8908, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646309

RESUMO

Studying the genetics of phenotypic convergence can yield important insights into adaptive evolution. Here, we conducted a comparative genomic study of four lineages (species and subspecies) of anadromous shad (Alosa) that have independently evolved life cycles entirely completed in freshwater. Three naturally diverged (A. fallax lacustris, A. f. killarnensis, and A. macedonica), and the fourth (A. alosa) was artificially landlocked during the last century. To conduct this analysis, we assembled and annotated a draft of the A. alosa genome and generated whole-genome sequencing for 16 anadromous and freshwater populations of shad. Widespread evidence for parallel genetic changes in freshwater populations within lineages was found. In freshwater A. alosa, which have only been diverging for tens of generations, this shows that parallel adaptive evolution can rapidly occur. However, parallel genetic changes across lineages were comparatively rare. The degree of genetic parallelism was not strongly related to the number of shared polymorphisms between lineages, thus suggesting that other factors such as divergence among ancestral populations or environmental variation may influence genetic parallelism across these lineages. These overall patterns were exemplified by genetic differentiation involving a paralog of ATPase-α1 that appears to be under selection in just two of the more distantly related lineages studied, A. f. lacustris and A. alosa. Our findings provide insights into the genetic architecture of adaptation and parallel evolution along a continuum of population divergence.

8.
PLoS Genet ; 3(3): e45, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17397259

RESUMO

Elucidating genetic mechanisms of adaptation is a goal of central importance in evolutionary biology, yet few empirical studies have succeeded in documenting causal links between molecular variation and organismal fitness in natural populations. Here we report a population genetic analysis of a two-locus alpha-globin polymorphism that underlies physiological adaptation to high-altitude hypoxia in natural populations of deer mice, Peromyscus maniculatus. This system provides a rare opportunity to examine the molecular underpinnings of fitness-related variation in protein function that can be related to a well-defined selection pressure. We surveyed DNA sequence variation in the duplicated alpha-globin genes of P. maniculatus from high- and low-altitude localities (i) to identify the specific mutations that may be responsible for the divergent fine-tuning of hemoglobin function and (ii) to test whether the genes exhibit the expected signature of diversifying selection between populations that inhabit different elevational zones. Results demonstrate that functionally distinct protein alleles are maintained as a long-term balanced polymorphism and that adaptive modifications of hemoglobin function are produced by the independent or joint effects of five amino acid mutations that modulate oxygen-binding affinity.


Assuntos
Adaptação Biológica/genética , Altitude , Peromyscus/genética , Peromyscus/fisiologia , Sequência de Aminoácidos , Animais , Colorado , Conversão Gênica , Frequência do Gene , Especiação Genética , Globinas/genética , Kansas , Desequilíbrio de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Polimorfismo Genético , Homologia de Sequência de Aminoácidos
9.
Evol Appl ; 13(4): 636-651, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32211057

RESUMO

Hybridization dynamics between co-occurring species in environments where human-mediated changes take place are important to quantify for furthering our understanding of human impacts on species evolution and for informing management. The allis shad Alosa alosa (Linnaeus, 1758) and twaite shad Alosa fallax (Lacépède, 1803), two clupeids sister species, have been severely impacted by human activities across Europe. The shrinkage of A. alosa distribution range along with the decline of the remaining populations' abundance threatens its persistence. The main objective was to evaluate the extent of hybridization and introgression between those interacting species. We developed a set of 77 species-specific SNP loci that allowed a better resolution than morphological traits as they enabled the detection of hybrids up to the third generation. Variable rates of contemporary hybridization and introgression patterns were detected in 12 studied sites across the French Atlantic coast. Mitochondrial markers revealed a cyto-nuclear discordance almost invariably involving A. alosa individuals with an A. fallax mitochondrial DNA and provided evidence of historical asymmetric introgression. Overall, contemporary and historical introgression revealed by nuclear and mitochondrial markers strongly suggests that a transfer of genes occurs from A. fallax toward A. alosa genome since at least four generations. Moreover, the outcomes of introgression greatly depend on the catchments where local processes are thought to occur. Undoubtedly, interspecific interaction and gene flow should not be overlooked when considering the management of those species.

10.
Gigascience ; 8(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31112613

RESUMO

BACKGROUND: The European sardine (Sardina pilchardus Walbaum, 1792) is culturally and economically important throughout its distribution. Monitoring studies of sardine populations report an alarming decrease in stocks due to overfishing and environmental change, which has resulted in historically low captures along the Iberian Atlantic coast. Important biological and ecological features such as population diversity, structure, and migratory patterns can be addressed with the development and use of genomics resources. FINDINGS: The genome of a single female individual was sequenced using Illumina HiSeq X Ten 10x Genomics linked reads, generating 113.8 gigabase pairs of data. Three draft genomes were assembled: 2 haploid genomes with a total size of 935 megabase pairs (N50 103 kilobase pairs) each, and a consensus genome of total size 950 megabase pairs (N50 97 kilobase pairs). The genome completeness assessment captured 84% of Actinopterygii Benchmarking Universal Single-Copy Orthologs. To obtain a more complete analysis, the transcriptomes of 11 tissues were sequenced to aid the functional annotation of the genome, resulting in 40,777 genes predicted. Variant calling on nearly half of the haplotype genome resulted in the identification of >2.3 million phased single-nucleotide polymorphisms with heterozygous loci. CONCLUSIONS: A draft genome was obtained, despite a high level of sequence repeats and heterozygosity, which are expected genome characteristics of a wild sardine. The reference sardine genome and respective variant data will be a cornerstone resource of ongoing population genomics studies to be integrated into future sardine stock assessment modelling to better manage this valuable resource.


Assuntos
Peixes/genética , Genoma , Anotação de Sequência Molecular , Polimorfismo Genético , Animais , Proteínas de Peixes/genética , Haplótipos , Sequenciamento Completo do Genoma
11.
Evol Appl ; 5(7): 657-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23144653

RESUMO

The application of evolutionary principles to the management of fisheries has gained considerable attention recently. Harvesting of fish may apply directional or disruptive selection to key life-history traits, and evidence for fishery-induced evolution is growing. The traits that are directly selected upon are often correlated (genetically or phenotypically) with a suite of interrelated physiological, behavioral, and morphological characters. A question that has received comparatively little attention is whether or not, after cessation of fishery-induced selection, these correlated traits revert back to previous states. Here, we empirically examine this question. In experiments with the Atlantic silverside, Menidia menidia, we applied size-selective culling for five generations and then maintained the lines a further five generations under random harvesting. We found that some traits do return to preharvesting levels (e.g., larval viability), some partially recover (e.g., egg volume, size-at-hatch), and others show no sign of change (e.g., food consumption rate, vertebral number). Such correlations among characters could, in theory, greatly accelerate or decelerate the recovery of fish populations. These results may explain why some fish stocks fail to recover after fishing pressure is relaxed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA