Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 294(6): 1891-1903, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30545940

RESUMO

The antibiotic trimethoprim is frequently used to manage Burkholderia infections, and members of the resistance-nodulation-division (RND) family of efflux pumps have been implicated in multidrug resistance of this species complex. We show here that a member of the distinct Escherichia coli multidrug resistance B (EmrB) family is a primary exporter of trimethoprim in Burkholderia thailandensis, as evidenced by increased trimethoprim sensitivity after inactivation of emrB, the gene that encodes EmrB. We also found that the emrB gene is up-regulated following the addition of gentamicin and that this up-regulation is due to repression of the gene encoding OstR, a member of the multiple antibiotic resistance regulator (MarR) family. The addition of the oxidants H2O2 and CuCl2 to B. thailandensis cultures resulted in OstR-dependent differential emrB expression, as determined by qRT-PCR analysis. Specifically, OstR functions as a rheostat that optimizes emrB expression under oxidizing conditions, and it senses oxidants by a unique mechanism involving two vicinal cysteines and one distant cysteine (Cys3, Cys4, and Cys169) per monomer. Paradoxically, emrB inactivation increased resistance of B. thailandensis to tetracycline, a phenomenon that correlated with up-regulation of an RND efflux pump. These observations highlight the intricate mechanisms by which expression of genes that encode efflux pumps is optimized depending on cellular concentrations of antibiotics and oxidants.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Burkholderia/fisiologia , Farmacorresistência Bacteriana/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Cisteína , Escherichia coli/química , Escherichia coli/genética , Oxidantes/metabolismo , Oxidantes/farmacologia , Proteínas Repressoras/genética , Resistência a Trimetoprima
2.
Sci Rep ; 10(1): 2135, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034218

RESUMO

Male germ cells are sensitive to heat stress and testes must be maintained outside the body for optimal fertility. However, no germ cell intrinsic mechanism that protects from heat has been reported. Here, we identify the germ cell specific Golgi glycoprotein MGAT4D as a protector of male germ cells from heat stress. Mgat4d is highly expressed in spermatocytes and spermatids. Unexpectedly, when the Mgat4d gene was inactivated globally or conditionally in spermatogonia, or mis-expressed in spermatogonia, spermatocytes or spermatids, neither spermatogenesis nor fertility were affected. On the other hand, when males were subjected to mild heat stress of the testis (43 °C for 25 min), germ cells with inactivated Mgat4d were markedly more sensitive to the effects of heat stress, and transgenic mice expressing Mgat4d were partially protected from heat stress. Germ cells lacking Mgat4d generally mounted a similar heat shock response to control germ cells, but could not maintain that response. Several pathways activated by heat stress in wild type were induced to a lesser extent in Mgat4d[-/-] heat-stressed germ cells (NFκB response, TNF and TGFß signaling, Hif1α and Myc genes). Thus, the Golgi glycoprotein MGAT4D is a novel, intrinsic protector of male germ cells from heat stress.


Assuntos
Células Germinativas/metabolismo , Glicoproteínas/metabolismo , Complexo de Golgi/metabolismo , Transtornos de Estresse por Calor/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Membrana/metabolismo , Testículo/metabolismo , Animais , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermátides/metabolismo , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Espermatozoides/metabolismo
3.
Microbiol Mol Biol Rev ; 83(1)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30487164

RESUMO

Species within the genus Burkholderia exhibit remarkable phenotypic diversity. Genomic plasticity, including genome reduction and horizontal gene transfer, has been correlated with virulence traits in several species. However, the conservation of virulence genes in species otherwise considered to have limited potential for infection suggests that phenotypic diversity may not be explained solely on the basis of genetic diversity. Instead, differential organization and control of gene regulatory networks may underlie many phenotypic differences. In this review, we evaluate how regulation of gene expression by members of the multiple antibiotic resistance regulator (MarR) family of transcription factors may contribute to shaping the physiological diversity of Burkholderia species, with a focus on the clinically relevant human pathogens. All Burkholderia species encode a relatively large number of MarR proteins, a feature common to bacteria that must respond to environmental changes such as those associated with host invasion. However, evolution of gene regulatory networks has likely resulted in orthologous transcription factors controlling disparate sets of genes. Adaptation to, and survival in, diverse habitats, including a human or plant host, is key to the success of Burkholderia species as (opportunistic) pathogens, and recent reports suggest that control of virulence-associated genes by MarR proteins features prominently among the survival strategies employed by these species. We suggest that identification of MarR regulons will contribute significantly to clarification of virulence determinants and phenotypic diversity.


Assuntos
Proteínas de Bactérias/fisiologia , Burkholderia/genética , Burkholderia/patogenicidade , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Redes Reguladoras de Genes , Humanos , Plantas/microbiologia , Conformação Proteica , Espécies Reativas de Oxigênio , Fatores de Transcrição/química , Fatores de Transcrição/genética , Virulência/genética
4.
ACS Chem Biol ; 12(12): 3012-3021, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087175

RESUMO

Many bacteria encode biosynthetic proteins that produce a vast array of natural products. These compounds are often synthesized during host invasion as they function as virulence factors. In addition, such secondary metabolites have yielded numerous molecular scaffolds with pharmaceutical and clinical importance. The gene clusters that encode proteins responsible for synthesis of these compounds are typically silenced or "cryptic" under laboratory growth conditions, hampering discovery of novel lead compounds. We report here that MftR is a global repressor of secondary metabolite synthesis in Burkholderia thailandensis and that urate functions as a physiologically relevant inducer of gene expression. Biosynthetic gene clusters under MftR control include those associated with production of the antimicrobial bactobolins, the iron siderophore malleobactin, and the virulence factor malleilactone. MftR also controls additional genes associated with survival in a host environment, such as genes encoding components of the type III secretion system (T3SS) and proteins linked to anaerobic respiration. This observation not only has implications for understanding activation of gene regulatory networks during host invasion, but it also paves the way for isolation of novel therapeutic leads.


Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Burkholderia/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Vias Biossintéticas/fisiologia , Burkholderia/metabolismo , Genoma Bacteriano , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA