Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cogn Neurosci ; : 1-38, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39116268

RESUMO

Trait self-report mindfulness scales measure one's disposition to pay nonjudgmental attention to the present moment. Concerns have been raised about the validity of trait mindfulness scales. Despite this, there is extensive literature correlating mindfulness scales with objective brain measures, with the goal of providing insight into mechanisms of mindfulness, and insight into associated positive mental health outcomes. Here, we systematically examined the neural correlates of trait mindfulness. We assessed 68 correlational studies across structural magnetic resonance imaging, task-based fMRI, resting-state fMRI, and EEG. Several consistent findings were identified, associating greater trait mindfulness with decreased amygdala reactivity to emotional stimuli, increased cortical thickness in frontal regions and insular cortex regions, and decreased connectivity within the default-mode network. These findings converged with results from intervention studies and those that included mindfulness experts. On the other hand, the connections between trait mindfulness and EEG metrics remain inconclusive, as do the associations between trait mindfulness and between-network resting-state fMRI metrics. ERP measures from EEG used to measure attentional or emotional processing may not show reliable individual variation. Research on body awareness and self-relevant processing is scarce. For a more robust correlational neuroscience of trait mindfulness, we recommend larger sample sizes, data-driven, multivariate approaches to self-report and brain measures, and careful consideration of test-retest reliability. In addition, we should leave behind simplistic explanations of mindfulness, as there are many ways to be mindful, and leave behind simplistic explanations of the brain, as distributed networks of brain areas support mindfulness.

2.
Hum Brain Mapp ; 45(7): e26666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726831

RESUMO

Advanced meditation such as jhana meditation can produce various altered states of consciousness (jhanas) and cultivate rewarding psychological qualities including joy, peace, compassion, and attentional stability. Mapping the neurobiological substrates of jhana meditation can inform the development and application of advanced meditation to enhance well-being. Only two prior studies have attempted to investigate the neural correlates of jhana meditation, and the rarity of adept practitioners has largely restricted the size and extent of these studies. Therefore, examining the consistency and reliability of observed brain responses associated with jhana meditation can be valuable. In this study, we aimed to characterize functional magnetic resonance imaging (fMRI) reliability within a single subject over repeated runs in canonical brain networks during jhana meditation performed by an adept practitioner over 5 days (27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus and several cortical networks, that is, the somatomotor, limbic, default-mode, control, and temporo-parietal, demonstrated good within-subject reliability across all jhanas. Additionally, we found that several other relevant brain networks (e.g., attention, salience) showed noticeable increases in reliability when fMRI measurements were adjusted for variability in self-reported phenomenology related to jhana meditation. Overall, we present a preliminary template of reliable brain areas likely underpinning core neurocognitive elements of jhana meditation, and highlight the utility of neurophenomenological experimental designs for better characterizing neuronal variability associated with advanced meditative states.


Assuntos
Imageamento por Ressonância Magnética , Meditação , Rede Nervosa , Humanos , Reprodutibilidade dos Testes , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto , Masculino , Feminino , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem
3.
Brain Topogr ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703334

RESUMO

Mindfulness meditation is a contemplative practice that is informed by Buddhism. It has been proven effective for improving mental and physical health in clinical and non-clinical contexts. To date, mainstream dialogue and scientific research on mindfulness has focused primarily on short-term mindfulness training and applications of mindfulness for reducing stress. Understanding advanced mindfulness practice has important implications for mental health and general wellbeing. According to Theravada Buddhist meditation, a "cessation" event is a dramatic experience of profound clarity and equanimity that involves a complete discontinuation in experience, and is evidence of mastery of mindfulness meditation. Thirty-seven cessation events were captured in a single intensively sampled advanced meditator (over 6,000 h of retreat mindfulness meditation training) while recording electroencephalography (EEG) in 29 sessions between November 12, 2019 and March 11, 2020. Functional connectivity and network integration were assessed from 40 s prior to cessations to 40 s after cessations. From 21 s prior to cessations there was a linear decrease in large-scale functional interactions at the whole-brain level in the alpha band. In the 40 s following cessations these interactions linearly returned to prior levels. No modulation of network integration was observed. The decrease in whole-brain functional connectivity was underlain by frontal to left temporal and to more posterior decreases in connectivity, while the increase was underlain by wide-spread increases in connectivity. These results provide neuroscientific evidence of large-scale modulation of brain activity related to cessation events that provides a foundation for future studies of advanced meditation.

4.
Heliyon ; 10(10): e31223, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803854

RESUMO

Meditation has been integral to human culture for millennia, deeply rooted in various spiritual and contemplative traditions. While the field of contemplative science has made significant steps toward understanding the effects of meditation on health and well-being, there has been little study of advanced meditative states, including those achieved through intense concentration and absorption. We refer to these types of states as advanced concentrative absorption meditation (ACAM), characterized by absorption with the meditation object leading to states of heightened attention, clarity, energy, effortlessness, and bliss. This review focuses on a type of ACAM known as jhana (ACAM-J) due to its well-documented history, systematic practice approach, recurring phenomenological themes, and growing popularity among contemplative scientists and more generally in media and society. ACAM-J encompasses eight layers of deep concentration, awareness, and internal experiences. Here, we describe the phenomenology of ACAM-J and present evidence from phenomenological and neuroscientific studies that highlight their potential applications in contemplative practices, psychological sciences, and therapeutics. We additionally propose theoretical ACAM-J frameworks grounded in current cognitive neuroscientific understanding of meditation and ancient contemplative traditions. We aim to stimulate further research on ACAM more broadly, encompassing advanced meditation including meditative development and meditative endpoints. Studying advanced meditation including ACAM, and specific practices such as ACAM-J, can potentially revolutionize our understanding of consciousness and applications for mental health.

5.
Sci Rep ; 14(1): 4072, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374177

RESUMO

Psychedelic substances induce profound alterations in consciousness. Careful preparation is therefore essential to limit adverse reactions, enhance therapeutic benefits, and maintain user safety. This paper describes the development of a self-directed, digital intervention for psychedelic preparation. Drawing on elements from the UK Medical Research Council (MRC) framework for developing complex interventions, the design was informed by a four-factor model of psychedelic preparedness, using a person-centred approach. Our mixed-methods investigation consisted of two studies. The first involved interviews with 19 participants who had previously attended a 'high-dose' psilocybin retreat, systematically exploring their preparation behaviours and perspectives on the proposed intervention. The second study engaged 28 attendees of an ongoing psilocybin retreat in co-design workshops, refining the intervention protocol using insights from the initial interviews. The outcome is a co-produced 21-day digital course (Digital Intervention for Psychedelic Preparation (DIPP)), that is organised into four modules: Knowledge-Expectation, Psychophysical-Readiness, Safety-Planning, and Intention-Preparation. Fundamental components of the course include daily meditation practice, supplementary exercises tied to the weekly modules, and mood tracking. DIPP provides a comprehensive and scalable solution to enhance psychedelic preparedness, aligning with the broader shift towards digital mental health interventions.


Assuntos
Alucinógenos , Pentamidina/análogos & derivados , Humanos , Alucinógenos/farmacologia , Psilocibina/farmacologia , Saúde Mental , Estado de Consciência
6.
Artigo em Inglês | MEDLINE | ID: mdl-38417786

RESUMO

BACKGROUND: Neuroimaging studies of major depression have typically been conducted using group-level approaches. However, given interindividual differences in brain systems, there is a need for individualized approaches to brain systems mapping and putative links toward diagnosis, symptoms, and behavior. METHODS: We used an iterative parcellation approach to map individualized brain systems in 328 participants from a multisite, placebo-controlled clinical trial. We hypothesized that participants with depression would show abnormalities in salience, control, default, and affective systems, which would be associated with higher levels of self-reported anhedonia, anxious arousal, and worse cognitive performance. Within hypothesized brain systems, we compared patch sizes (number of vertices) between depressed and healthy control groups. Within depressed groups, abnormal patches were correlated with hypothesized clinical and behavioral measures. RESULTS: Significant group differences emerged in hypothesized patches of 1) the lateral salience system (parietal operculum; t326 = -3.11, p = .002) and 2) the control system (left medial posterior prefrontal cortex region; z = -3.63, p < .001), with significantly smaller patches in these regions in participants with depression than in healthy control participants. Results suggest that participants with depression with significantly smaller patch sizes in the lateral salience system and control system regions experience greater anxious arousal and cognitive deficits. CONCLUSIONS: The findings imply that neural features mapped at the individual level may relate meaningfully to diagnosis, symptoms, and behavior. There is strong clinical relevance in taking an individualized brain systems approach to mapping neural functional connectivity because these associated region patch sizes may help advance our understanding of neural features linked to psychopathology and foster future patient-specific clinical decision making.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Anedonia/fisiologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
7.
Front Oncol ; 14: 1390542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826790

RESUMO

Primary brain neoplasms are associated with elevated mortality and morbidity rates. Brain tumour surgery aims to achieve maximal tumour resection while minimizing damage to healthy brain tissue. Research on Neuromodulation Induced Cortical Prehabilitation (NICP) has highlighted the potential, before neurosurgery, of establishing new brain connections and transfer functional activity from one area of the brain to another. Nonetheless, the neural mechanisms underlying these processes, particularly in the context of space-occupying lesions, remain unclear. A patient with a left frontotemporoinsular tumour underwent a prehabilitation protocol providing 20 sessions of inhibitory non-invasive neuromodulation (rTMS and multichannel tDCS) over a language network coupled with intensive task training. Prehabilitation resulted in an increment of the distance between the tumour and the language network. Furthermore, enhanced functional connectivity within the language circuit was observed. The present innovative case-study exposed that inhibition of the functional network area surrounding the space-occupying lesion promotes a plastic change in the network's spatial organization, presumably through the establishment of novel functional pathways away from the lesion's site. While these outcomes are promising, prudence dictates the need for larger studies to confirm and generalize these findings.

8.
Sci Rep ; 14(1): 1084, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212349

RESUMO

Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/psicologia , Benchmarking , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
9.
Nat Ment Health ; 2(2): 164-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948238

RESUMO

Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (ß = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA