Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279919

RESUMO

Toll-like receptors (TLRs) are the most widespread class of membrane-bound innate immune receptors, responsible of specific pathogen recognition and production of immune effectors through the activation of intracellular signaling cascades. The repertoire of TLRs was analyzed in 85 metazoans, enriched on molluscan species, an underrepresented phylum in previous studies. Following an ancient evolutionary origin, suggested by the presence of TLR genes in Anthozoa (Cnidaria), these receptors underwent multiple independent gene family expansions, the most significant of which occurred in bivalve molluscs. Marine mussels (Mytilus spp.) had the largest TLR repertoire in the animal kingdom, with evidence of several lineage-specific expanded TLR subfamilies with different degrees of orthology conservation within bivalves. Phylogenetic analyses revealed that bivalve TLR repertoires were more diversified than their counterparts in deuterostomes or ecdysozoans. The complex evolutionary history of TLRs, characterized by lineage-specific expansions and losses, along with episodic positive selection acting on the extracellular recognition domains, suggests that functional diversification might be a leading evolutionary force. We analyzed a comprehensive transcriptomic data set from Mytilus galloprovincialis and built transcriptomic correlation clusters with the TLRs expressed in gills and in hemocytes. The implication of specific TLRs in different immune pathways was evidenced, as well as their specific modulation in response to different biotic and abiotic stimuli. We propose that, in a similar fashion to the remarkable functional specialization of vertebrate TLRs, the expansion of the TLR gene family in bivalves attends to a functional specification motivated by the biological particularities of these organisms and their living environment.


Assuntos
Bivalves , Evolução Molecular , Animais , Filogenia , Receptores Toll-Like , Transdução de Sinais , Bivalves/genética
2.
Fish Shellfish Immunol ; 153: 109867, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214263

RESUMO

The study of mussels (Mytilus galloprovincialis) has grown in importance in recent years due to their high economic value and resistance to pathogens. Because of the biological characteristics revealed by mussel genome sequencing, this species is a valuable research model. The high genomic variability and diversity, particularly in immune genes, may be responsible for their resistance to pathogens found in seawater and continuously filtered and internalized by them. These facts, combined with the lack of proven mussel susceptibility to viruses in comparison to other bivalves such as oysters, result in a lack of studies on mussel antiviral response. We used RNA-seq to examine the genomic response of mussel hemocytes after they were exposed to poly I:C, simulating immune cell contact with viral dsRNA. Apoptosis and the molecular axis IRFs/STING-IFI44/IRGC1 were identified as the two main pathways in charge of the response but we also found a modulation of lncRNAs. Finally, in order to obtain new information about the response of mussels to putative natural challenges, we used VHSV virus (Viral Hemorrhagic Septicemia Virus) to run some functional analysis and confirm poly I:C's activity as an immunomodulator in a VHSV waterborne stimulation. Both, poly I:C as well as an injury stimulus (filtered sea water injection) accelerated the viral clearance by hemocytes and altered the expression of several immune genes, including IL-17, IRF1 and viperin.


Assuntos
Imunidade Inata , Mytilus , Poli I-C , Transcriptoma , Animais , Poli I-C/farmacologia , Mytilus/imunologia , Mytilus/genética , Mytilus/virologia , Imunidade Inata/genética , Novirhabdovirus/fisiologia , Hemócitos/imunologia , Perfilação da Expressão Gênica/veterinária
3.
Fish Shellfish Immunol ; 136: 108735, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37044187

RESUMO

As filter-feeding bivalves, mussels have been traditionally studied as possible vectors of different bacterial or viral pathogens. The absence of a known viral pathogen in these bivalves makes it particularly interesting to study the interaction of the mussel innate immune system with a virus of interest. In the present work, mussels were challenged with viral haemorrhagic septicaemia virus (VHSV), which is a pathogen in several fish species. The viral load was eliminated after 24 h and mussels evidenced antiviral activity towards VHSV, demonstrating that the virus was recognized and eliminated by the immune system of the host and confirming that mussels are not VHSV vectors in the marine environment. The transcriptome activating the antiviral response was studied, revealing the involvement of cytoplasmic viral sensors with the subsequent activation of the JAK-STAT pathway and several downstream antiviral effectors. The inflammatory response was inhibited with the profound downregulation of MyD88, shifting the immune balance towards antiviral functions. High modulation of retrotransposon activity was observed, revealing a mechanism that facilitates the antiviral response and that had not been previously observed in these species. The expression of several inhibitors of apoptosis and apoptosis-promoting genes was modulated, although clear inhibition of apoptosis in bivalves after severe viral infection and subsequent disease was not observed in this study. Finally, the modulated expression of several long noncoding RNAs that were correlated with genes involved in the immune response was detected.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Animais , Transcriptoma , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Novirhabdovirus/fisiologia , Antivirais/farmacologia
4.
Mar Drugs ; 21(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37103393

RESUMO

C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an important expansion in bivalve mollusks, which contrasted with the reduced repertoires of other mollusks, such as cephalopods. Orthology relationships demonstrated that these expanded repertoires consisted of CTL subfamilies conserved within Mollusca or Bivalvia and of lineage-specific subfamilies with orthology only between closely related species. Transcriptomic analyses revealed the importance of the bivalve subfamilies in mucosal immunity, as they were mainly expressed in the digestive gland and gills and modulated with specific stimuli. CTL domain-containing proteins that had additional domains (CTLDcps) were also studied, revealing interesting gene families with different conservation degrees of the CTL domain across orthologs from different taxa. Unique bivalve CTLDcps with specific domain architectures were revealed, corresponding to uncharacterized bivalve proteins with putative immune function according to their transcriptomic modulation, which could constitute interesting targets for functional characterization.


Assuntos
Bivalves , Lectinas Tipo C , Animais , Lectinas Tipo C/genética , Transcriptoma/genética , Bivalves/genética , Genômica , Genoma/genética , Filogenia
5.
iScience ; 26(10): 107827, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37744033

RESUMO

Presence/absence variation (PAV) is a well-known phenomenon in prokaryotes that was described for the first time in bivalves in 2020 in Mytilus galloprovincialis. The objective of the present study was to further our understanding of the PAV phenomenon in mussel biology. The distribution of PAV was studied in a mussel chromosome-level genome assembly, revealing a widespread distribution but with hotspots of dispensability. Special attention was given to the effect of PAV in gene expression, since dispensable genes were found to be inherently subject to distortions due to their sparse distribution among individuals. Furthermore, the high expression and strong tissue specificity of some dispensable genes, such as myticins, strongly supported their biological relevance. The significant differences in the repertoire of dispensable genes associated with two geographically distinct populations suggest that PAV is involved in local adaptation. Overall, the PAV phenomenon would provide a key selective advantage at the population level.

6.
Sci Total Environ ; 833: 155140, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421481

RESUMO

This study presents the results of SARS-CoV-2 surveillance in sewage water of 11 municipalities and marine bioindicators in Galicia (NW of Spain) from May 2020 to May 2021. An integrated pipeline was developed including sampling, pre-treatment and biomarker quantification, RNA detection, SARS-CoV-2 sequencing, mechanistic mathematical modeling and forecasting. The viral load in the inlet stream to the wastewater treatment plants (WWTP) was used to detect new outbreaks of COVID-19, and the data of viral load in the wastewater in combination with data provided by the health system was used to predict the evolution of the pandemic in the municipalities under study within a time horizon of 7 days. Moreover, the study shows that the viral load was eliminated from the treated sewage water in the WWTP, mainly in the biological reactors and the disinfection system. As a result, we detected a minor impact of the virus in the marine environment through the analysis of seawater, marine sediments and, wild and aquacultured mussels in the final discharge point of the WWTP.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Biomarcadores Ambientais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Prevalência , RNA Viral , Esgotos , Águas Residuárias , Água
7.
Front Immunol ; 12: 692997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386003

RESUMO

The interleukin-17 (IL-17) family consists of proinflammatory cytokines conserved during evolution. A comparative genomics approach was applied to examine IL-17 throughout evolution from poriferans to higher vertebrates. Cnidaria was highlighted as the most ancient diverged phylum, and several evolutionary patterns were revealed. Large expansions of the IL-17 repertoire were observed in marine molluscs and echinoderm species. We further studied this expansion in filter-fed Mytilus galloprovincialis, which is a bivalve with a highly effective innate immune system supported by a variable pangenome. We recovered 379 unique IL-17 sequences and 96 receptors from individual genomes that were classified into 23 and 6 isoforms after phylogenetic analyses. Mussel IL-17 isoforms were conserved among individuals and shared between closely related Mytilidae species. Certain isoforms were specifically implicated in the response to a waterborne infection with Vibrio splendidus in mussel gills. The involvement of IL-17 in mucosal immune responses could be conserved in higher vertebrates from these ancestral lineages.


Assuntos
Evolução Molecular , Imunidade nas Mucosas , Interleucina-17/imunologia , Mytilus/imunologia , Receptores de Interleucina-17/imunologia , Animais , Interações Hospedeiro-Patógeno , Interleucina-17/genética , Interleucina-17/metabolismo , Mytilus/genética , Mytilus/metabolismo , Filogenia , Isoformas de Proteínas , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Especificidade da Espécie , Vibrio/imunologia , Vibrio/patogenicidade , Vibrioses/imunologia , Vibrioses/metabolismo , Vibrioses/microbiologia
8.
Front Immunol ; 11: 615580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391288

RESUMO

Mussels (Mytilus galloprovincialis) are filter feeder bivalves that are constantly in contact with a wide range of microorganisms, some of which are potentially pathogenic. How mussels recognize and respond to pathogens has not been fully elucidated to date; therefore, we investigated the immune mechanisms that these animals employ in response to a bacterial bath infection from the surrounding water, mimicking the response that mussels mount under natural conditions. After the bath infection, mussels were able to remove the bacteria from their bodies and from the water tank. Accordingly, antibacterial activity was detected in gill extracts, demonstrating that this tissue plays a central role in removing and clearing potential pathogens. A transcriptomic study performed after a bath infection with Vibrio splendidus identified a total of 1,156 differentially expressed genes. The expression levels of genes contributing to a number of biological processes, such as immune response activation pathways and their regulation with cytokines, cell recognition, adhesion and apoptosis, were significantly modulated after infection, suggesting that the gills play important roles in pathogen recognition, as well as being activators and regulators of the mussel innate immune response. In addition to RNA-seq analysis, long non-coding RNAs and their neighboring genes were also analyzed and exhibited modulation after the bacterial challenge. The response of gills against bath infection was compared with the findings of a previous transcriptomic study on hemocytes responding to systemic infection, demonstrating the different and specific functions of gills. The results of this study indicate that recognition processes occur in the gill, thereby activating the effector agents of the immune response to overcome bacterial infection.


Assuntos
Brânquias/metabolismo , Mytilus/imunologia , Transcriptoma , Vibrio/imunologia , Animais , Aquicultura , Carga Bacteriana , Ontologia Genética , Brânquias/imunologia , Brânquias/microbiologia , Hemócitos/imunologia , Hemolinfa/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mytilus/genética , Mytilus/microbiologia , Especificidade de Órgãos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Extratos de Tecidos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA