Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 156: 214-221, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063706

RESUMO

There is an unmet clinical need for a spinal fusion implant material that recapitulates the biological and mechanical performance of natural bone. We have developed a bioceramic, Sr-HT-Gahnite, which has been identified as a potential fusion device material. This material has the capacity to transform the future of the global interbody devices market, with follow on social, economic, and environmental benefits, rooted in its remarkable combination of mechanical properties and bioactivity. In this study, and in line with FDA requirements, the in vivo preclinical systemic biological safety of a Sr-HT-Gahnite interbody fusion device is assessed over 26 weeks in sheep under good laboratory practice (GLP). Following the in-life phase, animals are assessed for systemic biological effects via blood haematology and clinical biochemistry, strontium dosage analysis in the blood and wool, and histopathology examination of the distant organs including adrenals, brain, heart, kidneys, liver, lungs and bronchi, skeletal muscle, spinal nerves close to the implanted sites, ovaries, and draining lymph nodes. Our results show that no major changes in blood haematology or biochemistry parameters are observed, no systemic distribution of strontium to the blood and wool, and no macroscopic or histopathological abnormalities in the distant organs when Sr-HT-Gahnite was implanted, compared to baseline and control values. Together, these results indicate the systemic safety of the Sr-HT-Gahnite interbody fusion device. The results of this study extend to the systemic safety of other Sr-HT-Gahnite implanted medical devices in contact with bone or tissue, of similar size and manufactured using the described processes. STATEMENT OF SIGNIFICANCE: This paper is considered original and innovative as it is the first that thoroughly reports the systemic biological safety of previously undescribed bioceramic material, Sr-HT-Gahnite. The study has been performed under good laboratory practice, in line with FDA requirements for assessment of a new interbody fusion device, making the results broadly applicable to the translation of sheep models to the human cervical spine; and also the translation of Sr-HT-Gahnite as a biomaterial for use in additional applications. We expect this study to be of broad interest to the readership of Acta Biomaterilia. Its findings are directly applicable to researchers and clinicians working in bone repair and the development of synthetic biomaterials.


Assuntos
Materiais Biocompatíveis , Fusão Vertebral , Humanos , Animais , Ovinos , Materiais Biocompatíveis/química , Próteses e Implantes , Osso e Ossos , Estrôncio/farmacologia , Estrôncio/química , Impressão Tridimensional , Fusão Vertebral/métodos
2.
Med Devices (Auckl) ; 15: 1-14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115849

RESUMO

PURPOSE: The purposes of the present research were to assess the accuracy and usability of the inertial navigation system (INS). MATERIALS AND METHODS: The accuracy of the device navigation subsystem was assessed using benchtop testing. The usability was assessed through simulated use with surgeons. These results were compared to recent cadaveric results for the same system. RESULTS: The navigation subsystem had an overall mean absolute error of 1.21° and a maximum absolute error across all devices of 4.79°. The device was found to be usable and to add an estimated 7 minutes to surgery time. CONCLUSION: The INS uses a novel approach to provide the surgeon with accurate and fast acetabular cup inclination and anteversion angles during THA.

3.
Adv Healthc Mater ; 8(8): e1801298, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30773833

RESUMO

Achieving adequate healing in large or load-bearing bone defects is highly challenging even with surgical intervention. The clinical standard of repairing bone defects using autografts or allografts has many drawbacks. A bioactive ceramic scaffold, strontium-hardystonite-gahnite or "Sr-HT-Gahnite" (a multi-component, calcium silicate-based ceramic) is developed, which when 3D-printed combines high strength with outstanding bone regeneration ability. In this study, the performance of purely synthetic, 3D-printed Sr-HT-Gahnite scaffolds is assessed in repairing large and load-bearing bone defects. The scaffolds are implanted into critical-sized segmental defects in sheep tibia for 3 and 12 months, with bone autografts used for comparison. The scaffolds induce substantial bone formation and defect bridging after 12 months, as indicated by X-ray, micro-computed tomography, and histological and biomechanical analyses. Detailed analysis of the bone-scaffold interface using focused ion beam scanning electron microscopy and multiphoton microscopy shows scaffold degradation and maturation of the newly formed bone. In silico modeling of strain energy distribution in the scaffolds reveal the importance of surgical fixation and mechanical loading on long-term bone regeneration. The clinical application of 3D-printed Sr-HT-Gahnite scaffolds as a synthetic bone substitute can potentially improve the repair of challenging bone defects and overcome the limitations of bone graft transplantation.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Porosidade , Impressão Tridimensional , Ovinos , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/fisiologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA