Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(4): 813-821, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564436

RESUMO

Germline heterozygous PTEN mutations cause subsets of Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS); these subsets are characterized by high risks of breast, thyroid, and other cancers and, in one subset, autism spectrum disorder (ASD). Up to 10% of individuals with PTENMUT CS, CS-like syndrome, or BRRS have germline SDHx (succinate dehydrogenase, mitochondrial complex II) variants, which modify cancer risk. PTEN contributes to metabolic reprogramming; this is a well-established role in a cancer context. Relatedly, SDH sits at the crossroad of the electron transport chain and tricarboxylic acid (TCA) cycle, two central bioenergetic pathways. Intriguingly, PTENMUT and SDHMUT individuals have reduced SDH catalytic activity, resulting in succinate accumulation; this indicates a common genotype-independent biochemical alteration. Here, we conducted a TCA targeted metabolomics study on 511 individuals with CS, CS-like syndrome, or BRRS with various genotypes (PTEN or SDHx, mutant or wild type [WT]) and phenotypes (cancer or ASD) and a series of 187 population controls. We found consistent TCA cycle metabolite alterations in cases with various genotypes and phenotypes compared to controls, and we found unique correlations of individual metabolites with particular genotype-phenotype combinations. Notably, increased isocitrate (p = 1.2 × 10-3), but reduced citrate (p = 5.0 × 10-4), were found to be associated with breast cancer in individuals with PTENMUT/SDHxWT. Conversely, increased lactate was associated with neurodevelopmental disorders regardless of genotype (p = 9.7 × 10-3); this finding was replicated in an independent validation series (n = 171) enriched for idiopathic ASD (PTENWT, p = 5.6 × 10-4). Importantly, we identified fumarate (p = 1.9 × 10-2) as a pertinent metabolite, distinguishing individuals who develop ASD from those who develop cancer. Our observations suggest that TCA cycle metabolite alterations are germane to the pathobiology of PTEN-related CS and BRRS, as well as genotype-independent ASD, with implications for potential biomarker and/or therapeutic value.


Assuntos
Transtorno Autístico/genética , Ciclo do Ácido Cítrico , Síndrome do Hamartoma Múltiplo/genética , Neoplasias/genética , Fenótipo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Gastroenterology ; 148(7): 1405-1416.e3, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25701737

RESUMO

BACKGROUND & AIMS: Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The Drosophila chromosome-associated protein D3 (dCAP-D3) regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS: Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS: CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, the products of which heterodimerize to form an amino acid transporter in HT-29 cells after bacterial infection; levels of SLC7A5-SLC3A2 were increased in tissues from patients with UC compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5-SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3-deficient cells. CONCLUSIONS: CAP-D3 down-regulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with active UC; strategies to increase its levels might restore mucosal homeostasis to patients with active UC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Salmonella/fisiologia , Adenosina Trifosfatases , Autofagia , Células CACO-2 , Proteínas de Ciclo Celular/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Proteínas de Drosophila , Células Epiteliais/imunologia , Escherichia coli/imunologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Regulação da Expressão Gênica , Células HT29 , Humanos , Imunidade Inata , Mucosa Intestinal/imunologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Viabilidade Microbiana , Complexos Multiproteicos/metabolismo , Interferência de RNA , Salmonella/imunologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção
3.
Am J Pathol ; 185(6): 1624-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864926

RESUMO

Intestinal epithelial cell (IEC) death is typical of inflammatory bowel disease (IBD). We investigated: i) whether IEC-released necrotic cell products (proinflammatory mediators) amplify mucosal inflammation, ii) the capacity of necrotic cell lysates from HT29 cells or human IECs to induce human intestinal fibroblasts' (HIF) production of IL-6 and IL-8, and iii) whether IL-1α, released by injured colonocytes, exacerbated experimental IBD. Necrotic cell lysates potently induced HIF IL-6 and IL-8 production independent of Toll-like receptors 2 and 4, receptor for advanced glycation end-products, high-mobility group box 1, uric acid, IL-33, or inflammasome activation. IL-1α was the key IEC-derived necrotic cell product involved in HIF cytokine production. IL-1α-positive cells were identified in the epithelium in human IBD and dextran sulfate sodium (DSS)-induced colitis. IL-1α was detected in the stool of colitic mice before IL-1ß. IL-1α enemas reactivated inflammation after DSS colitis recovery, induced IL-1 receptor expression in subepithelial fibroblasts, and activated de novo inflammation even in mice without overt colitis, after the administration of low-dose DSS. IL-1α amplifies gut inflammation by inducing cytokine production by mesenchymal cells. IL-1α-mediated IEC-fibroblast interaction may be involved in amplifying and perpetuating inflammation, even without obvious intestinal damage. IL-1α may be a target for treating early IBD or preventing the reactivation of IBD.


Assuntos
Colite/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Interleucina-1alfa/metabolismo , Mucosa Intestinal/metabolismo , Animais , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Fibroblastos/patologia , Células HT29 , Humanos , Inflamação/patologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Intestinos/patologia , Camundongos
4.
Sci Rep ; 14(1): 756, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191648

RESUMO

Immunotherapy, specifically immune checkpoint blockade (ICB), has revolutionized the treatment paradigm of triple-negative breast cancers (TNBCs). However, a subset of TNBCs devoid of tumor-infiltrating T cells (TILs) or PD-L1 expression generally has a poor response to immunotherapy. In this study, we aimed to sensitize TNBCs to ICB by harnessing the immunomodulating potential of S. aureus, a breast-resident bacterium. We show that intratumoral injection of spent culture media from S. aureus recruits TILs and suppresses tumor growth in a preclinical TNBC model. We further demonstrate that α-hemolysin (HLA), an S. aureus-produced molecule, increases the levels of CD8+ T cells and PD-L1 expression in tumors, delays tumor growth, and triggers tumor necrosis. Mechanistically, while tumor cells treated with HLA display Gasdermin E (GSDME) cleavage and a cellular phenotype resembling pyroptosis, splenic T cells incubated with HLA lead to selective expansion of CD8+ T cells. Notably, intratumoral HLA injection prior to ICB augments the therapeutic efficacy compared to ICB alone. This study uncovers novel immunomodulatory properties of HLA and suggests that intratumoral administration of HLA could be a potential priming strategy to expand the population of TNBC patients who may respond to ICB.


Assuntos
Infecções Estafilocócicas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Staphylococcus aureus , Antígeno B7-H1 , Agentes de Imunomodulação , Linfócitos T CD8-Positivos , Imunoterapia
5.
Am J Pathol ; 179(5): 2660-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21945322

RESUMO

In addition to mesenchymal cells, endothelial cells may contribute to fibrosis through the process of endothelial-to-mesenchymal transition (EndoMT). We investigated whether human intestinal microvascular endothelial cells (HIMEC) undergo EndoMT and contribute to fibrosis in human and experimental inflammatory bowel disease (IBD). HIMEC were exposed to TGF-ß1, IL-1ß, and TNF-α or supernatants of lamina propria mononuclear cells (LPMC) and evaluated for morphological, phenotypic, and functional changes compatible with EndoMT. Genomic analysis was used to identify transcription factors involved in the transformation process. Evidence of in situ and in vivo EndoMT was sought in inflamed human and murine intestine. The combination of TGF-ß1, IL-1ß and TNF-α, or activated LPMC supernatants induced morphological and phenotypic changes consistent with EndoMT with a dominant effect by IL-1. These changes persisted after removal of the inducing agents and were accompanied by functional loss of acetylated LDL-uptake and migratory capacity, and acquisition of de novo collagen synthesis capacity. Sp1 appeared to be the main transcriptional regulator of EndoMT. EndoMT was detected in microvessels of inflammatory bowel disease (IBD) mucosa and experimental colonic fibrosis of Tie2-green fluorescent protein (GFP) reporter-expressing mice. In conclusion, chronic inflammation induces transdifferentiation of intestinal mucosal microvascular cells into mesenchymal cells, suggesting that the intestinal microvasculature contributes to IBD-associated fibrosis through the novel process of EndoMT.


Assuntos
Transdiferenciação Celular/fisiologia , Citocinas/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/patologia , Doenças Inflamatórias Intestinais/patologia , Mesoderma/patologia , Animais , Movimento Celular/fisiologia , Transdiferenciação Celular/genética , Células Cultivadas , Colite/patologia , Colágeno Tipo I/metabolismo , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Fibrose , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Microvasos/patologia , Fenótipo , Fatores de Transcrição/metabolismo , Regulação para Cima
6.
NPJ Genom Med ; 7(1): 16, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241692

RESUMO

PTEN hamartoma tumor syndrome (PHTS), caused by germline PTEN mutations, has been associated with organ-specific cancers and autism spectrum disorder (ASD) and/or developmental delay (DD). Predicting precise clinical phenotypes in any one PHTS individual remains impossible. We conducted an untargeted metabolomics study on an age- and sex-matched series of PHTS individuals with ASD/DD, cancer, or both phenotypes. Using agnostic metabolomic-analyses from patient-derived lymphoblastoid cells and their spent media, we found 52 differentially abundant individual metabolites, 69 cell/media metabolite ratios, and 327 pair-wise metabotype (shared metabolic phenotype) ratios clearly distinguishing PHTS individuals based on phenotype. Network analysis based on significant metabolites pointed to hubs converging on PTEN-related insulin, MAPK, AMPK, and mTOR signaling cascades. Internal cross-validation of significant metabolites showed optimal overall accuracy in distinguishing PHTS individuals with ASD/DD versus those with cancer. Such metabolomic markers may enable more accurate risk predictions and prevention in individual PHTS patients at highest risk.

7.
Am J Hum Genet ; 83(2): 261-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18678321

RESUMO

Individuals with PTEN mutations have Cowden syndrome (CS), associated with breast, thyroid, and endometrial neoplasias. Many more patients with features of CS, not meeting diagnostic criteria (termed CS-like), are evaluated by clinicians for CS-related cancer risk. Germline mutations in succinate dehydrogenase subunits SDHB-D cause pheochromocytoma-paraganglioma syndrome. One to five percent of SDHB/SDHD mutation carriers have renal cell or papillary thyroid carcinomas, which are also CS-related features. SDHB-D may be candidate susceptibility genes for some PTEN mutation-negative individuals with CS-like cancers. To address this hypothesis, germline SDHB-D mutation analysis in 375 PTEN mutation-negative CS/CS-like individuals was performed, followed by functional analysis of identified SDH mutations/variants. Of 375 PTEN mutation-negative CS/CS-like individuals, 74 (20%) had increased manganese superoxide dismutase (MnSOD) expression, a manifestation of mitochondrial dysfunction. Among these, 10 (13.5%) had germline mutations/variants in SDHB (n = 3) or SDHD (7), not found in 700 controls (p < 0.001). Compared to PTEN mutation-positive CS/CS-like individuals, those with SDH mutations/variants were enriched for carcinomas of the female breast (6/9 SDH versus 30/107 PTEN, p < 0.001), thyroid (5/10 versus 15/106, p < 0.001), and kidney (2/10 versus 4/230, p = 0.026). In the absence of PTEN alteration, CS/CS-like-related SDH mutations/variants show increased phosphorylation of AKT and/or MAPK, downstream manifestations of PTEN dysfunction. Germline SDH mutations/variants occur in a subset of PTEN mutation-negative CS/CS-like individuals and are associated with increased frequencies of breast, thyroid, and renal cancers beyond those conferred by germline PTEN mutations. SDH testing should be considered for germline PTEN mutation-negative CS/CS-like individuals, especially in the setting of breast, thyroid, and/or renal cancers.


Assuntos
Regulação da Expressão Gênica , Variação Genética , Mutação em Linhagem Germinativa , Síndrome do Hamartoma Múltiplo/genética , Succinato Desidrogenase/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , Fenótipo , Succinato Desidrogenase/fisiologia
8.
Mol Autism ; 12(1): 5, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509259

RESUMO

BACKGROUND: PTEN is a well-established risk gene for autism spectrum disorder (ASD). Yet, little is known about how PTEN mutations and associated molecular processes influence neurobehavioral function in mutation carriers with (PTEN-ASD) and without ASD (PTEN no-ASD). The primary aim of the present study was to examine group differences in peripheral blood-derived PTEN pathway protein levels between PTEN-ASD, PTEN no-ASD, and idiopathic macrocephalic ASD patients (macro-ASD). Secondarily, associations between protein levels and neurobehavioral functions were examined in the full cohort. METHODS: Patients were recruited at four tertiary medical centers. Peripheral blood-derived protein levels from canonical PTEN pathways (PI3K/AKT and MAPK/ERK) were analyzed using Western blot analyses blinded to genotype and ASD status. Neurobehavioral measures included standardized assessments of global cognitive ability and multiple neurobehavioral domains. Analysis of variance models examined group differences in demographic, neurobehavioral, and protein measures. Bivariate correlations, structural models, and statistical learning procedures estimated associations between molecular and neurobehavioral variables. To complement patient data, Western blots for downstream proteins were generated to evaluate canonical PTEN pathways in the PTEN-m3m4 mouse model. RESULTS: Participants included 61 patients (25 PTEN-ASD, 16 PTEN no-ASD, and 20 macro-ASD). Decreased PTEN and S6 were observed in both PTEN mutation groups. Reductions in MnSOD and increases in P-S6 were observed in ASD groups. Elevated neural P-AKT/AKT and P-S6/S6 from PTEN murine models parallel our patient observations. Patient PTEN and AKT levels were independently associated with global cognitive ability, and p27 expression was associated with frontal sub-cortical functions. As a group, molecular measures added significant predictive value to several neurobehavioral domains over and above PTEN mutation status. LIMITATIONS: Sample sizes were small, precluding within-group analyses. Protein and neurobehavioral data were limited to a single evaluation. A small number of patients were excluded with invalid protein data, and cognitively impaired patients had missing data on some assessments. CONCLUSIONS: Several canonical PTEN pathway molecules appear to influence the presence of ASD and modify neurobehavioral function in PTEN mutation patients. Protein assays of the PTEN pathway may be useful for predicting neurobehavioral outcomes in PTEN patients. Future longitudinal analyses are needed to replicate these findings and evaluate within-group relationships between protein and neurobehavioral measures. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02461446.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/etiologia , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Heterozigoto , PTEN Fosfo-Hidrolase/genética , Adolescente , Alelos , Animais , Transtorno do Espectro Autista/psicologia , Biomarcadores , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Masculino , Testes Neuropsicológicos , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Transdução de Sinais , Adulto Jovem
9.
Bioorg Med Chem Lett ; 20(12): 3821-5, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20471256

RESUMO

A series of tricyclic anilinopyrimidines were synthesized and evaluated as IKKbeta inhibitors. Several analogues, including tricyclic phenyl (10, 18a, 18c, 18d, and 18j) and thienyl (26 and 28) derivatives were shown to have good in vitro enzyme potency and excellent cellular activity. Pharmaceutical profiling of a select group of tricyclic compounds compared to the non-tricyclic analogues suggested that in some cases, the improved cellular activity may be due to increased clog P and permeability.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/farmacologia , Animais , Linhagem Celular , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade
10.
Mucosal Immunol ; 13(4): 665-678, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32020030

RESUMO

Intestinal fibrosis leading to strictures remains a significant clinical problem in inflammatory bowel diseases (IBD). The role of bacterial components in activating intestinal mesenchymal cells and driving fibrogenesis is largely unexplored. Tamoxifen-inducible α-SMA promoter Cre mice crossed with floxed MyD88 mice were subjected to chronic dextran sodium sulfate colitis. MyD88 was deleted prior to or after induction of colitis. Human intestinal myofibroblasts (HIMF) were exposed to various bacterial components and assessed for fibronectin (FN) and collagen I (Col1) production. RNA sequencing was performed. Post-transcriptional regulation was assessed by polysome profiling assay. Selective deletion of MyD88 in α-SMA-positive cells prior to, but not after induction of, experimental colitis decreased the degree of intestinal fibrosis. HIMF selectively responded to flagellin with enhanced FN or Col1 protein production in a MyD88-dependent manner. RNA sequencing suggested minimal transcriptional changes induced by flagellin in HIMF. Polysome profiling revealed higher proportions of FN and Col1 mRNA in the actively translated fractions of flagellin exposed HIMF, which was mediated by eIF2 alpha and 4EBP1. In conclusion, selectivity of flagellin-induced ECM secretion in HIMF is post-transcriptionally regulated. The results may represent a novel and targetable link between the gut microbiota and intestinal fibrogenesis.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Fator 88 de Diferenciação Mieloide/deficiência , Transdução de Sinais , Animais , Biomarcadores , Células Cultivadas , Suscetibilidade a Doenças , Matriz Extracelular , Fibroblastos/metabolismo , Fibrose , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Camundongos , Processamento Pós-Transcricional do RNA
11.
Inflamm Bowel Dis ; 25(2): 294-305, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30295747

RESUMO

Background: Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) displays multiple activities, among which pathogen binding and angiogenesis are particularly prominent. These same functions are also exerted by Toll- and NOD-like receptors (TLRs and NLRs), which are critical mediators of innate immune responses. We investigated whether a functional inter-relationship exists between CEACAM1 and TLRs and NLRs and its potential impact on induction of intestinal angiogenesis. Methods: This hypothesis was tested using human intestinal microvascular endothelial cells, a unique cell population exposed to microbial products under physiological and pathological conditions. Results: The results show that activation of TLR2/4, TLR4, NOD1, and NOD2 by specific bacterial ligands selectively and differentially upregulates the levels of cellular and soluble CEACAM1 produced by intestinal microvascular endothelial cells. The results also show that CEACAM1 regulates the migration, transmigration, and tube formation of these endothelial cells and mediates vessel sprouting induced by specific TLR and NLR bacterial ligands. Combined, these results demonstrate a close and reciprocal regulatory interaction between CEACAM1 and bacterial products in mediating multiple functions essential to new vessel formation in the gut mucosa. Conclusions: A coordinated and reciprocal interaction of CEACAM1 and microbiota-derived factors is necessary to optimize angiogenesis in the gut mucosa. This suggests that a coordination of endogenous and exogenous innate immune responses is necessary to promote intestinal angiogenesis under physiological and inflammatory conditions such as inflammatory bowel disease.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Imunidade Inata/imunologia , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Microvasos/patologia , Neovascularização Fisiológica , Animais , Antígenos de Bactérias/imunologia , Antígenos CD/genética , Estudos de Casos e Controles , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Movimento Celular , Proliferação de Células , Citocinas/metabolismo , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microvasos/imunologia , Microvasos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , RNA Interferente Pequeno/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
12.
Clin Epigenetics ; 8: 30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973718

RESUMO

BACKGROUND: Fibrosis of the intestine is a common and poorly understood complication of Crohn's disease (CD) characterized by excessive deposition of extracellular matrix and accompanied by narrowing and obstruction of the gut lumen. Defining the molecular characteristics of this fibrotic disorder is a vital step in the development of specific prediction, prevention, and treatment strategies. Previous epigenetic studies indicate that alterations in DNA methylation could explain the mechanism by which mesenchymal cells adopt the requisite pro-fibrotic phenotype that promotes fibrosis progression. However, to date, genome-wide analysis of the DNA methylome of any type of human fibrosis is lacking. We employed an unbiased approach using deep sequencing to define the DNA methylome and transcriptome of purified fibrotic human intestinal fibroblasts (HIF) from the colons of patients with fibrostenotic CD. RESULTS: When compared with normal fibroblasts, we found that the majority of differential DNA methylation was within introns and intergenic regions and not associated with CpG islands. Only a low percentage occurred in the promoters and exons of genes. Integration of the DNA methylome and transcriptome identified regions in three genes that inversely correlated with gene expression: wingless-type mouse mammary tumor virus integration site family, member 2B (WNT2B) and two eicosanoid synthesis pathway enzymes (prostacyclin synthase and prostaglandin D2 synthase). These findings were independently validated by RT-PCR and bisulfite sequencing. Network analysis of the data also identified candidate molecular interactions relevant to fibrosis pathology. CONCLUSIONS: Our definition of a genome-wide fibrosis-specific DNA methylome provides new gene networks and epigenetic states by which to understand mechanisms of pathological gene expression that lead to fibrosis. Our data also provide a basis for development of new fibrosis-specific therapies, as genes dysregulated in fibrotic Crohn's disease, following functional validation, can serve as new therapeutic targets.


Assuntos
Doença de Crohn/genética , Metilação de DNA/genética , Ilhas de CpG/genética , Doença de Crohn/patologia , Sistema Enzimático do Citocromo P-450/genética , Fibroblastos/patologia , Fibrose , Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Glicoproteínas/genética , Humanos , Regiões Promotoras Genéticas , Transcriptoma/genética , Proteínas Wnt/genética
13.
Endocrinology ; 145(8): 3913-24, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15131019

RESUMO

Androgen-regulated genes (ARGs) are essential for the development of the prostate. Ironically, ARGs are also responsible for the pathogenesis of prostate cancer. We used oligonucleotide array technology to study the expression profiles of ARGs in LNCaP prostate cancer cells and identified 692 dihydrotestosterone-regulated genes. Representative clusters containing genes with similar expression patterns to prostate-specific antigen and other known ARGs are discussed. Based on functional information, we categorized several candidate targets for prostate cancer therapy and diagnosis. Although many of these candidate targets are known to play an important role in cancer development, several are novel genes to the field of prostate cancer. A cross-comparison study of our results with those that have been previously published from three other array experiments using a similar LNCaP model validated 13 of these candidate targets as androgen-regulated. FKBP51 (FK506-binding immunophilin 51) was found in the same cluster as prostate-specific antigen and its protein expression was increased in LNCaP cells treated with either dihydrotestosterone or synthetic androgen R1881. Results from mining the Gene Logic BioExpress database showed that FKBP51 expression is significantly higher in the prostate cancer group than in the normal and normal adjacent group. Additionally, the androgen-independent prostate tumor xenograft, CWR22R, had higher FKBP51 protein levels than that of the androgen-dependent prostate tumor xenograft, CWR22. A tissue microarray study further revealed that FKBP51 protein expression was higher in prostate cancer specimens than in benign prostate tumor samples. These results suggest the potential value of FKBP51 as a novel diagnostic marker or target for prostate cancer therapy.


Assuntos
Androgênios/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/genética , Proteínas de Ligação a Tacrolimo/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Ligação a Tacrolimo/análise , Proteínas de Ligação a Tacrolimo/biossíntese
14.
Inflamm Bowel Dis ; 19(7): 1354-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23635716

RESUMO

BACKGROUND: Fibrosis of the intestine is currently an irreversible complication of inflammatory bowel disease; yet, little is understood of the underlying pathogenesis and antifibrotic strategies remain elusive. To develop effective therapies, knowledge of the mechanism of transcription and excessive deposition of type I collagen, a hallmark of fibrosis, is needed. We have shown previously that endothelial-to-mesenchymal transition (EndoMT) contributes to the pool of intestinal fibrotic cells and that a cytokine cocktail (interleukin 1-ß, tumor necrosis factor α, and transforming growth factor ß) induces collagen I alpha 2 (COL1A2) mRNA and protein. METHODS: Chromatin immunoprecipitation assays on pure cultures of human intestinal mucosal endothelial cells undergoing EndoMT were performed with antibodies to specific histone modifications and RNA polymerase II. Reverse transcriptase-PCR was used to quantify the levels of Col1A2 and endothelial-specific von Willebrand factor (vWF) mRNA. RESULTS: We showed that cytokines induce selective chromatin modifications (histone 4 hyperacetylation, and hypermethylation of histone 3) and phosphorylated RNA polymerase II at the COL1A2 promoter. Hypoacetylated and hypomethylated histone 3 was detected on the repressed vWF gene. Prolonged exposure to cytokines (16 days) retained hyperacetylation of select lysines in H4 on the COL1A2 promoter. Removal of cytokines after 16 days and continued culture for 10 days showed persistent hyperacetylation at lysine 16 in histone H4. CONCLUSIONS: This is the first study to show that COL1A2 gene expression is associated with cytokine-induced, temporally ordered, and persistent chromatin modifications and suggests that these are important determinants of gene expression in EndoMT and intestinal fibrosis.


Assuntos
Cromatina/genética , Colágeno Tipo I/genética , Endotélio Vascular/efeitos dos fármacos , Fibrose/tratamento farmacológico , Interleucina-1beta/farmacologia , Mucosa Intestinal/patologia , Mesoderma/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Colágeno Tipo I/metabolismo , Metilação de DNA , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Fibrose/metabolismo , Fibrose/patologia , Histonas/genética , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lisina/genética , Mesoderma/metabolismo , Mesoderma/patologia , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
15.
Anal Biochem ; 326(1): 106-13, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14769342

RESUMO

In response to diverse stimuli, the transcription factor NF-kappaB is activated by the IKK kinase complex containing two kinases (IKKalpha and IKKbeta) that phosphorylate IkappaB, an inhibitory protein of NF-kappaB. The phosphorylation of IkappaB results in ubiquitination and degradation of IkappaB, allowing NF-kappaB to translocate to the nucleus where it regulates its target genes. To elucidate the role of IKK in the NF-kappaB signaling pathway, we have developed and characterized two quantitative, sensitive, and nonradioactive assays for evaluating IKKbeta activity: a dissociation-enhanced lanthanide fluorescence immunoassay called DELFIA and a homogeneous time-resolved fluorescence resonance energy transfer assay called LANCE. We show that the two assays have similar sensitivity and Michaelis constants (Km) for adenosine 5'-triphosphate and substrate; however, the LANCE format was far more efficient and easier to perform. Additionally, the assays were validated with the known kinase inhibitor K252a and several other kinase inhibitors, which showed that the IC(50) values of the two assays were comparable. In summary, both assays are quantitative, sensitive, reproducible, and amenable to high-throughput screening with improved waste management over radioactive assays.


Assuntos
Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Humanos , Quinase I-kappa B , Concentração Inibidora 50 , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Radioisótopos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA