Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 57(9): 1899-907, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27328698

RESUMO

The repair of PSII under strong light is particularly sensitive to reactive oxygen species (ROS), such as the superoxide radical and hydrogen peroxide, and these ROS are efficiently scavenged by superoxide dismutase (SOD) and catalase. In the present study, we generated transformants of the cyanobacterium Synechococcus elongatus PCC 7942 that overexpressed an iron superoxide dismutase (Fe-SOD) from Synechocystis sp. PCC 6803; a highly active catalase (VktA) from Vibrio rumoiensis; and both enzymes together. Then we examined the sensitivity of PSII to photoinhibition in the three strains. In cells that overexpressed either Fe-SOD or VktA, PSII was more tolerant to strong light than it was in wild-type cells. Moreover, in cells that overexpressed both Fe-SOD and VktA, PSII was even more tolerant to strong light. However, the rate of photodamage to PSII, as monitored in the presence of chloramphenicol, was similar in all three transformant strains and in wild-type cells, suggesting that the overexpression of these ROS-scavenging enzymes might not protect PSII from photodamage but might protect the repair of PSII. Under strong light, intracellular levels of ROS fell significantly, and the synthesis de novo of proteins that are required for the repair of PSII, such as the D1 protein, was enhanced. Our observations suggest that overexpressed Fe-SOD and VktA might act synergistically to alleviate the photoinhibition of PSII by reducing intracellular levels of ROS, with resultant protection of the repair of PSII from oxidative inhibition.


Assuntos
Catalase/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Superóxido Dismutase/metabolismo , Synechocystis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catalase/genética , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Luz , Paraquat/metabolismo , Paraquat/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Synechocystis/efeitos dos fármacos
2.
Plant Cell Physiol ; 57(11): 2417-2426, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27565206

RESUMO

Examination of the effects of high temperature on the photoinhibition of photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803 revealed that the extent of photoinhibition of PSII was lower at moderately high temperatures (35-42 °C) than at 30 °C. Photodamage to PSII, as determined in the presence of chloramphenicol, which blocks the repair of PSII, was accelerated at the moderately high temperatures but the effects of repair were greater than those of photodamage. The synthesis de novo of the D1 protein, which is essential for the repair of PSII, was enhanced at 38 °C. Electron transport and the synthesis of ATP were also enhanced at 38 °C, while levels of reactive oxygen species fell. Inhibition of the Calvin-Benson cycle with glycolaldehyde abolished the enhancement of repair of PSII at 38 °C, suggesting that an increase in the activity of the Calvin-Benson cycle might be required for the enhancement of repair at moderately high temperatures. The synthesis de novo of metabolic intermediates of the Calvin-Benson cycle, such as 3-phosphoglycerate, was also enhanced at 38 °C. We propose that moderate heat stress might enhance the repair of PSII by stimulating the synthesis of ATP and depressing the production of reactive oxygen species, via the stimulation of electron transport and suppression of the accumulation of excess electrons on the acceptor side of photosystem I, which might be driven by an increase in the activity of the Calvin-Benson cycle.


Assuntos
Proteínas de Bactérias/metabolismo , Resposta ao Choque Térmico/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons/efeitos da radiação , Espaço Intracelular/metabolismo , Metaboloma/efeitos da radiação , Fotossíntese/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA