Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(9): 4021-4028, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33899486

RESUMO

Nanoscale phase control is one of the most powerful approaches to specifically tailor electrical fields in modern nanophotonics. Especially the precise subwavelength assembly of many individual nanobuilding blocks has given rise to exciting new materials as diverse as metamaterials, for miniaturizing optics, or 3D assembled plasmonic structures for biosensing applications. Despite its fundamental importance, the phase response of individual nanostructures is experimentally extremely challenging to visualize. Here, we address this shortcoming and measure the quantitative scattering phase of different nanomaterials such as gold nanorods and spheres as well as dielectric nanoparticles. Beyond reporting spectrally resolved responses, with phase changes close to π when passing the particles' plasmon resonance, we devise a simple method for distinguishing different plasmonic and dielectric particles purely based on their phase behavior. Finally, we integrate this novel approach in a single-shot two-color scheme, capable of directly identifying different types of nanoparticles on one sample, from a single widefield image.

2.
Nano Lett ; 20(6): 4537-4542, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401523

RESUMO

Plasmonic nanostructures dramatically alter the radiative and nonradiative properties of single molecules in their vicinity. This coupling-induced change in decay channels selectively enhances specific vibronic transitions, which can enable plasmonic control of molecular reactivity. Here, we report coupling-dependent spectral emission shaping of single Rhodamine 800 molecules in the vicinity of plasmonic gold nanorods. We show that the relative vibronic transition rates of the first two vibronic transitions of the spontaneous emission spectrum can be tuned in the weak coupling regime, by approximately 25-fold, on the single molecule level.

3.
Nanoscale ; 12(6): 3723-3730, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31993603

RESUMO

Traditionally, the nanoscale interaction between single photon emitters and plasmonic nanostructures is studied by relying on deterministic, near-perfect, nanoscale-control, either top-down or bottom-up. However, these approaches are ultra-low throughput thus rendering systematic studies difficult and time-consuming. Here, we show a highly parallelised far-field tactic, combining multiplexed super-resolution fluorescence localization microscopy and data-driven statistical analysis, to study near-field interactions between gold nanorods and single molecules, even at bulk concentrations. We demonstrate that ensemble-level single molecule detection allows separating individual emitters according to their coupling strength with tailored resonant structures, which ultimately permits the reconstruction of super-resolved 2D interaction maps around individual nanoantennas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA