RESUMO
Curcumae Rhizoma, also known as Ezhu is a traditional Chinese medicine that has been used for many centuries against several diseases. The rhizome of the plant is composed of curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin), and essential volatile oils including curcumol, curdione, and germacrone. While curcuminoids have been extensively studied for their antimicrobial, antioxidant, anti-inflammatory and anticancer properties, the therapeutic efficacy of curcumol is still emerging. Recent studies have shown anticancer properties of curcumol against multiple solid tumors such as breast, colorectal, head and neck, and lung adenocarcinomas. The underlying anti-tumor mechanisms revealed inhibition of several signaling pathways (NF-κB, MAPK, PI-3K/AKT, and GSK-3ß) associated with cell proliferation, survival, anti-apoptosis, invasion and metastasis. Besides curcumol, extracts from the Curcumae Rhizoma roots possess many other terpenoids such as ß-elemene, δ-elemene, germacrone, furanodiene and furanodienone with known anticancer properties. In this review, we comprehensively focused on the composition of Curcumae Rhizoma essential oils, their structure, isolation and therapeutic uses of curcumol to aid in the improvement and development of novel drugs with minimal cytotoxicity, enhanced efficacy, and less cost.
Assuntos
Óleos Voláteis , Sesquiterpenos , Quinase 3 da Glicogênio Sintase , Humanos , Óleos Voláteis/farmacologia , Rizoma , Sesquiterpenos/farmacologia , TerpenosRESUMO
Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.
Assuntos
Carcinoma de Células Escamosas/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Microambiente Tumoral/imunologia , Apoptose , Carcinoma de Células Escamosas/metabolismo , Quimiocinas/imunologia , Citocinas/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Prognóstico , Transdução de Sinais , Microambiente Tumoral/fisiologiaRESUMO
Background: Globally, the healthcare industry is well known to be one of the strongest drivers of economic growth and development. The sector has gained substantial attention to deal with the fallout of COVID-19, leading to improvement in the quality observed in developed and developing nations. With the advent of the twenty-first century, globalization an ever-growing populace, and environmental changes prompted the more noteworthy spread of irresistible diseases, highlighting the association between wellbeing and future health security. The massive spread of COVID-19 paralyzed the global economy and took a toll on health governance and wellbeing. The present review aims to map the harrowing impacts of COVID-19 on the QoL (quality of life) observed. Particularly the post-pandemic era is likely to boot-strap the healthcare sector. Hence in post COVID era, there is a dire need to strengthen the healthcare system and understand the evolving challenges to answer calls in recovery in the wake of COVID-19. Conclusion: There is a flurry of research highlighting the implications faced due to the rise of the pandemic, resulting in the wrecking growth and development. However, the massive potential of telehealth is still largely underexplored with scarce research on countless evolving technologies. The current crisis highlighted the need to develop emerging frameworks and facilitate multilateral cooperation. The present research can serve as the baseline for better future strategies to improve global health initiatives. Further, this can help to focus on wider health determinants, redesign strategies and policies for the healthcare industry and to mitigate/deal better with future pandemics.
RESUMO
N-acetyl cysteine (NAC) is a promising drug for prophylaxis and treatment of coronavirus disease 2019 (COVID-19) based on antioxidant and anti-inflammatory mechanisms. Further studies with cautious approach are needed to establish the benefits and risks before considering NAC as an adjuvant treatment for COVID-19.
RESUMO
Cancer is one of the leading causes of death and significantly burdens the healthcare system. Due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. The use of natural products as anticancer agents is an acceptable therapeutic approach due to accessibility, applicability, and reduced cytotoxicity. Natural products have been an incomparable source of anticancer drugs in the modern era of drug discovery. Along with their derivatives and analogs, natural products play a major role in cancer treatment by modulating the cancer microenvironment and different signaling pathways. These compounds are effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway, and Hedgehog pathway). The historical record of natural products is strong, but there is a need to investigate the current role of natural products in the discovery and development of cancer drugs and determine the possibility of natural products being an important source of future therapeutic agents. Many target-specific anticancer drugs failed to provide successful results, which accounts for a need to investigate natural products with multi-target characteristics to achieve better outcomes. The potential of natural products to be promising novel compounds for cancer treatment makes them an important area of research. This review explores the significance of natural products in inhibiting the various signaling pathways that serve as drivers of carcinogenesis and thus pave the way for developing and discovering anticancer drugs.
Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Proteínas Hedgehog , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Via de Sinalização WntRESUMO
Cancer cell biology takes advantage of identifying diverse cellular signaling pathways that are disrupted in cancer. Signaling pathways are an important means of communication from the exterior of cell to intracellular mediators, as well as intracellular interactions that govern diverse cellular processes. Oncogenic mutations or abnormal expression of signaling components disrupt the regulatory networks that govern cell function, thus enabling tumor cells to undergo dysregulated mitogenesis, to resist apoptosis, and to promote invasion to neighboring tissues. Unraveling of dysregulated signaling pathways may advance the understanding of tumor pathophysiology and lead to the improvement of targeted tumor therapy. In this review article, different signaling pathways and how their dysregulation contributes to the development of tumors have been discussed.
Assuntos
Neoplasias/patologia , Transdução de Sinais , Apoptose , Proliferação de Células , HumanosRESUMO
Darwinian fitness in holometabolous insects like the fruit fly Drosophila melanogaster is reported to be positively correlated with body size. If large individuals in a population have higher fitness, then one would expect directional selection to operate leading to uniformly large individuals. However, size polymorphism persists in nature and needs further probing. We assessed the effect of body size on some of the fitness and fitness-related traits in replicate populations of genotypically large, genotypically small and phenotypically small D. melanogaster flies. In this study, the time taken to attain reproductive maturity and copulation duration were independent of fly size. Fecundity and longevity of large females were significantly higher when they partnered genotypically small males than when they were with genotypically larger or phenotypically small males. The increased female longevity when in association with genotypically small males was not due to selective early death of males that would release the female partner from presumed cost of persistent courtship. On the contrary, the genotypically as well as phenotypically small males had significantly higher longevity than large males. The virility of the genotypically small males was not significantly different from that of genotypically large males. Our results clearly show that selection on body size operates in the opposite direction (disruptive selection) for the two genders, thus explaining the persistence of size polymorphisms in the holometabolous insect, Drosophila melanogaster.