RESUMO
We have investigated transcriptional and epigenetic differences in peripheral blood mononuclear cells (PBMCs) of monozygotic female twins discordant in the diagnosis of amyotrophic lateral sclerosis (ALS). Exploring DNA methylation differences by reduced representation bisulfite sequencing (RRBS), we determined that, over time, the ALS twin developed higher abundances of the CD14 macrophages and lower abundances of T cells compared to the non-ALS twin. Higher macrophage signature in the ALS twin was also shown by RNA sequencing (RNA-seq). Moreover, the twins differed in the methylome at loci near several genes, including EGFR and TNFRSF11A, and in the pathways related to the tretinoin and H3K27me3 markers. We also tested cytokine production by PBMCs. The ALS twin's PBMCs spontaneously produced IL-6 and TNF-α, whereas PBMCs of the healthy twin produced these cytokines only when stimulated by superoxide dismutase (SOD)-1. These results and flow cytometric detection of CD45 and CD127 suggest the presence of memory T cells in both twins, but effector T cells only in the ALS twin. The ALS twin's PBMC supernatants, but not the healthy twin's, were toxic to rat cortical neurons, and this toxicity was strongly inhibited by an IL-6 receptor antibody (tocilizumab) and less well by TNF-α and IL-1ß antibodies. The putative neurotoxicity of IL-6 and TNF-α is in agreement with a high expression of these cytokines on infiltrating macrophages in the ALS spinal cord. We hypothesize that higher macrophage abundance and increased neurotoxic cytokines have a fundamental role in the phenotype and treatment of certain individuals with ALS.-Lam, L., Chin, L., Halder, R. C., Sagong, B., Famenini, S., Sayre, J., Montoya, D., Rubbi L., Pellegrini, M., Fiala, M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Citocinas/metabolismo , Epigênese Genética , Leucócitos Mononucleares/metabolismo , Monócitos/metabolismo , Linfócitos T/metabolismo , Idoso , Animais , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Ratos , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
We investigated the effects of 4-17 month supplementation with ω-3 fatty acids and antioxidants (Smartfish drink; Smartfish AS, Oslo, Norway) in 12 patients with minor cognitive impairment (MCI) [minimental state examination (MMSE) ≥19], 2 patients with pre-MCI (normal MMSE), and 7 patients with Alzheimer disease (AD) (MMSE <19). We measured the phagocytosis of amyloid-ß 1-42 (Aß) by flow cytometry and microscopy, the transcription of inflammatory genes by RT-PCR, the production of resolvin D1 (RvD1) by enzyme immunoassay, and the cognitive status by MMSE. In patients with MCI and pre-MCI, phagocytosis of Aß by monocytes increased from 530 to 1306 mean fluorescence intensity units (P = 0.016). The increase in patients with AD was not significant (N.S.). The lipidic mediator RvD1, which stimulates Aß phagocytosis in vitro, increased in macrophages in 80% of patients with MCI and pre-MCI (mean increase 9.95 pg/ml) (N.S.). Transcription of inflammatory genes' mRNAs was increased in a subgroup of patients with low transcription at baseline, whereas it was not significantly changed in patients with high transcription at baseline. The mean MMSE score of patients with MCI and pre-MCI was 25.9 at baseline and 25.7 after 4-17 months (N.S.). Our study is the first to show significant immune and biochemical effects of ω-3 fatty acids with antioxidants in patients with MCI. Cognitive benefits of ω-3 supplementation in patients with MCI should be tested in a clinical trial.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/dietoterapia , Disfunção Cognitiva/fisiopatologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Antioxidantes/administração & dosagem , Colecalciferol/administração & dosagem , Disfunção Cognitiva/psicologia , Suplementos Nutricionais , Feminino , Humanos , Inflamação/dietoterapia , Inflamação/genética , Inflamação/fisiopatologia , Macrófagos/fisiologia , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Monócitos/fisiologia , Fagocitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resveratrol , Estilbenos/administração & dosagemRESUMO
Successful visualization of prostate cancer (PCa) tumor margins during surgery remains a major challenge. The visualization of these tumors during surgery via near infrared fluorescence (NIRF) imaging would greatly enhance surgical resection, minimizing tumor recurrence and improving outcome. Furthermore, chemotherapy is typically administered to patients after surgery to treat any missed tumor tissue around the surgical area, minimizing metastasis and increasing patient survival. For these reasons, a theranostics fluorescent nanoparticle could be developed to assist in the visualization of PCa tumor margins, while also delivering chemotherapeutic drug after surgery. Methods: Ferumoxytol (FMX) conjugated to the fluorescent dye and PCa targeting agent, heptamethine carbocyanine (HMC), yielded the HMC-FMX nanoprobe that was tested in vitro with various PCa cell lines and in vivo with both subcutaneous and orthotopic PCa mouse models. Visualization of these tumors via NIRF imaging after administration of HMC-FMX was performed. In addition, delivery of chemotherapeutic drug and their effect on tumor growth was also assessed. Results: HMC-FMX internalized into PCa cells, labeling these cells and PCa tumors in mice with near infrared fluorescence, facilitating tumor margin visualization. HMC-FMX was also able to deliver drugs to these tumors, reducing cell migration and slowing down tumor growth. Conclusion: HMC-FMX specifically targeted PCa tumors in mice allowing for the visualization of tumor margins by NIRF imaging. Furthermore, delivery of anticancer drugs by HMC-FMX effectively reduced prostate tumor growth and reduced cell migration in vitro. Thus, HMC-FMX can potentially translate into the clinic as a nanotheranostics agent for the intraoperative visualization of PCa tumor margins, and post-operative treatment of tumors with HMC-FMX loaded with anticancer drugs.
Assuntos
Nanopartículas , Neoplasias da Próstata/patologia , Humanos , Cuidados Intraoperatórios , Masculino , Neoplasias da Próstata/cirurgiaRESUMO
Despite significant efforts to improve glioblastoma multiforme (GBM) treatment, GBM remains one of the most lethal cancers. Effective GBM treatments require sensitive intraoperative tumor visualization and effective postoperative chemotherapeutic delivery. Unfortunately, the diffusive and infiltrating nature of GBM limits the detection of GBM tumors, and current intraoperative visualization methods limit complete tumor resection. In addition, although chemotherapy is often used to eliminate any cancerous tissue remaining after surgery, most chemotherapeutic drugs do not effectively cross the brain-blood barrier (BBB) or enter GBM tumors. As a result, GBM has limited treatment options with high recurrence rates, and methods that improve its complete visualization during surgery and treatment are needed. Herein, we report a fluorescent nanoparticle platform for the near-infrared fluorescence (NIRF)-based tumor boundary visualization and image-guided drug delivery into GBM tumors. Our nanoplatform is based on ferumoxytol (FMX), an FDA-approved magnetic resonance imaging-sensitive superparamagnetic iron oxide nanoparticle, which is conjugated with hepthamethine cyanine (HMC), a NIRF ligand that specifically targets the organic anion transporter polypeptides that are overexpressed in GBM. We have shown that HMC-FMX nanoparticles cross the BBB and selectively accumulate in the tumor using orthotopic GBM mouse models, enabling NIRF-based visualization of infiltrating tumor tissue. In addition, HMC-FMX can encapsulate chemotherapeutic drugs, such as paclitaxel or cisplatin, and deliver these agents into GBM tumors, reducing tumor size and increasing survival. Taken together, these observations indicate that HMC-FMX is a promising nanoprobe for GBM surgical visualization and drug delivery.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Camundongos , Paclitaxel/uso terapêuticoRESUMO
Pancreatic cancer has a poor prognosis attributed in part to immune suppression and deactivation of natural killer (NK) cells. Curcuminoids have a potential for improving the therapy of pancreatic cancer given promising results in cancer models and a clinical trial, but their oral absorption is limited. Our objective in this study is to show curcuminoid anti-oncogenic effects alone and together with human NK cells. We tested curcuminoids in an emulsion of ω-3 fatty acids and anti-oxidants ("Smartfish") regarding their direct cytocidal effect and enhancement of the cytocidal activity of NK cells in pancreatic ductal adenocarcinoma (PDAC) cells (Mia Paca 2 and L3.6). Curcuminoids (at ≥10 µM) with ω-3 fatty acids and anti-oxidants or with the lipidic mediator resolvin D1 (RvD1) (26 nM) induced high caspase-3 activity in PDAC cells. Importantly, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 significantly potentiated NK cell cytocidal function and protected them against degradation. In a co-culture of cancer cells with NK cells, interferon-γ (IFN-γ) production by NK cells was not altered by ω-3 fatty acids with anti-oxidants or by RvD1 but was inhibited by curcuminoids. The inhibition was not eliminated by ω-3 fatty acids or RvD1 but was relieved by removing curcuminoids after adding NK cells. In conclusion, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 have increased cytotoxic activity on PDAC cells alone and with NK cells. The effects of curcuminoids with ω-3 fatty acids and anti-oxidants on pancreatic cancer will be investigated in a mouse model with humanized immune system.
RESUMO
Sporadic ALS patients display heterogeneous immune pathways in peripheral blood mononuclear cells (PBMCs). We tested nine sALS patients and one unaffected identical twin of an index case by RNA-Seq of PBMCs. The inflammatory patients (n = 3) clustered into a subset with an inflammatory Th1/Th17 signature and the non-inflammatory patients (n = 7) into another subset with a B cell signature. The inflammatory subset was remarkable for granulocyte and agranulocyte diapedesis, hepatic fibrosis, roles of cytokines and metalloproteases. The non-inflammatory subset was highlighted by degradation of vitamin E, serotonin and nucleotides, altered T cell and B cell signaling, agranulocyte diapedesis, and up regulation of B cell genes. Identification of these differentially regulated pathways in sALS patients may guide the choice of anti-inflammatory therapies.