Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(6): 1065-1081.e23, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35245431

RESUMO

Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.


Assuntos
Córtex Motor , Movimento , Tálamo , Animais , Mesencéfalo , Camundongos , Córtex Motor/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia
2.
J Med Ultrasound ; 32(1): 83-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665335

RESUMO

Inflammatory necrosis of the falciform ligament is an extremely rare cause of acute right upper quadrant pain. Due to overlapping symptoms with pathologies affecting the gall bladder and liver, this poses a diagnostic challenge with limited existing literature. Here, we report a case of a 62-year-old female patient presenting in the accident and emergency department with right upper quadrant pain. The patient underwent ultrasonography and revealed thickened and echogenic falciform ligament. Further, a computed tomography revealed swollen falciform ligament with associated fat stranding. The patient was kept under conservative management and improved over 2 weeks.

3.
BMC Plant Biol ; 23(1): 552, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940862

RESUMO

In this study, we investigated the intricate interplay between Trichoderma and the tomato genome, focusing on the transcriptional and metabolic changes triggered during the late colonization event. Microarray probe set (GSE76332) was utilized to analyze the gene expression profiles changes of the un-inoculated control (tomato) and Trichoderma-tomato interactions for identification of the differentially expressed significant genes. Based on principal component analysis and R-based correlation, we observed a positive correlation between the two cross-comaparable groups, corroborating the existence of transcriptional responses in the host triggered by Trichoderma priming. The statistically significant genes based on different p-value cut-off scores [(padj-values or q-value); padj-value < 0.05], [(pcal-values); pcal-value < 0.05; pcal < 0.01; pcal < 0.001)] were cross compared. Through cross-comparison, we identified 156 common genes that were consistently significant across all probability thresholds, and showing a strong positive corelation between p-value and q-value in the selected probe sets. We reported TD2, CPT1, pectin synthase, EXT-3 (extensin-3), Lox C, and pyruvate kinase (PK), which exhibited upregulated expression, and Glb1 and nitrate reductase (nii), which demonstrated downregulated expression during Trichoderma-tomato interaction. In addition, microbial priming with Trichoderma resulted into differential expression of transcription factors related to systemic defense and flowering including MYB13, MYB78, ERF2, ERF3, ERF5, ERF-1B, NAC, MADS box, ZF3, ZAT10, A20/AN1, polyol sugar transporter like zinc finger proteins, and a novel plant defensin protein. The potential bottleneck and hub genes involved in this dynamic response were also identified. The protein-protein interaction (PPI) network analysis based on 25 topmost DEGS (pcal-value < 0.05) and the Weighted Correlation Gene Network Analysis (WGCNA) of the 1786 significant DEGs (pcal-value < 0.05) we reported the hits associated with carbohydrate metabolism, secondary metabolite biosynthesis, and the nitrogen metabolism. We conclude that the Trichoderma-induced microbial priming re-programmed the host genome for transcriptional response during the late colonization event and were characterized by metabolic shifting and biochemical changes specific to plant growth and development. The work also highlights the relevance of statistical parameters in understanding the gene regulatory dynamics and complex regulatory networks based on differential expression, co-expression, and protein interaction networks orchestrating the host responses to beneficial microbial interactions.


Assuntos
Hypocreales , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética
4.
J Neurosci ; 41(46): 9617-9632, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34642213

RESUMO

Recognition memory provides the ability to distinguish familiar from novel objects and places, and is important for recording and updating events to guide appropriate behavior. The hippocampus (HPC) and medial prefrontal cortex (mPFC) have both been implicated in recognition memory, but the nature of HPC-mPFC interactions, and its impact on local circuits in mediating this process is not known. Here we show that novelty discrimination is accompanied with higher theta activity (4-10 Hz) and increased c-Fos expression in both these regions. Moreover, theta oscillations were highly coupled between the HPC and mPFC during recognition memory retrieval for novelty discrimination, with the HPC leading the mPFC, but not during initial learning. Principal neurons and interneurons in the mPFC responded more strongly during recognition memory retrieval compared with learning. Optogenetic silencing of HPC input to the mPFC disrupted coupled theta activity between these two structures, as well as the animals' (male Sprague Dawley rats) ability to differentiate novel from familiar objects. These results reveal a key role of monosynaptic connections between the HPC and mPFC in novelty discrimination via theta coupling and identify neural populations that underlie this recognition memory-guided behavior.SIGNIFICANCE STATEMENT Many memory processes are highly dependent on the interregional communication between the HPC and mPFC via neural oscillations. However, how these two brain regions coordinate their oscillatory activity to engage local neural populations to mediate recognition memory for novelty discrimination is poorly understood. This study revealed that the HPC and mPFC theta oscillations and their temporal coupling is correlated with recognition memory-guided behavior. During novel object recognition, the HPC drives mPFC interneurons to effectively reduce the activity of principal neurons. This study provides the first evidence for the requirement of the HPC-mPFC pathway to mediate recognition memory for novelty discrimination and describes a mechanism for how this memory is regulated.


Assuntos
Aprendizagem por Discriminação/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
5.
J Neurosci ; 41(19): 4172-4186, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33785644

RESUMO

Microglia, the resident immune cells of the CNS, have emerged as key regulators of neural precursor cell activity in the adult brain. However, the microglia-derived factors that mediate these effects remain largely unknown. In the present study, we investigated a role for microglial brain-derived neurotrophic factor (BDNF), a neurotrophic factor with well known effects on neuronal survival and plasticity. Surprisingly, we found that selective genetic ablation of BDNF from microglia increased the production of newborn neurons under both physiological and inflammatory conditions (e.g., LPS-induced infection and traumatic brain injury). Genetic ablation of BDNF from microglia otherwise also interfered with self-renewal/proliferation, reducing their overall density. In conclusion, we identify microglial BDNF as an important factor regulating microglia population dynamics and states, which in turn influences neurogenesis under both homeostatic and pathologic conditions.SIGNIFICANCE STATEMENT (1) Microglial BDNF contributes to self-renewal and density of microglia in the brain. (2) Selective ablation of BDNF in microglia stimulates neural precursor proliferation. (3) Loss of microglial BDNF augments working memory following traumatic brain injury. (4) Benefits of repopulating microglia on brain injury are not mediated via microglial BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/fisiologia , Microglia/metabolismo , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular/genética , Dendritos/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Encefalite/induzido quimicamente , Encefalite/patologia , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/ultraestrutura
6.
Mol Psychiatry ; 26(11): 6975-6991, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34040151

RESUMO

Advanced physiological aging is associated with impaired cognitive performance and the inability to induce long-term potentiation (LTP), an electrophysiological correlate of memory. Here, we demonstrate in the physiologically aged, senescent mouse brain that scanning ultrasound combined with microbubbles (SUS+MB), by transiently opening the blood-brain barrier, fully restores LTP induction in the dentate gyrus of the hippocampus. Intriguingly, SUS treatment without microbubbles (SUSonly), i.e., without the uptake of blood-borne factors, proved even more effective, not only restoring LTP, but also ameliorating the spatial learning deficits of the aged mice. This functional improvement is accompanied by an altered milieu of the aged hippocampus, including a lower density of perineuronal nets, increased neurogenesis, and synaptic signaling, which collectively results in improved spatial learning. We therefore conclude that therapeutic ultrasound is a non-invasive, pleiotropic modality that may enhance cognition in elderly humans.


Assuntos
Potenciação de Longa Duração , Receptores de N-Metil-D-Aspartato , Animais , Cognição/fisiologia , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Camundongos , Neurogênese , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Mol Psychiatry ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005027

RESUMO

Fear and anxiety are two defensive emotional states evoked by threats in the environment. Fear can be initiated by either imminent or future threats, but experimentally, it is typically studied as a phasic response initiated by imminent danger that subsides when the threats is removed. In contrast, anxiety is a sustained response, initiated by imagined or potential threats. The central amygdala (CeA) is a key structure active during both fear and anxiety but thought to engage different neural systems. Fear responses are triggered by activation of somatostatin (SOM) expressing neurons in the lateral division of the CeA (CeL), and downstream projections from the medial division. Anxiety responses engage the central extended amygdala that includes the CeA, central sublenticular extended amygdala (SLEAc) and bed nucleus of the stria terminalis, but the nature of connections between these regions is not understood. Here using a combination of tract tracing, electrophysiology, and behavioral analysis in mice, we show that a population of SOM+ neurons in the CeL project to the SLEAc where they inhibit local GABAergic interneurons. Optogenetic activation of this input to the SLEAc has no effect on movement, but is anxiogenic in both open field and elevated plus maze. Our results define the inhibitory connections between CeL and SLEAc and establish a specific CeL to SLEAc projection as a circuit element in mediating anxiety.

8.
J Physiol ; 595(16): 5653-5669, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28594440

RESUMO

KEY POINTS: Dendritic and spine calcium imaging in combination with electrophysiology in acute slices revealed that in medial intercalated cells of the amygdala: Action potentials back-propagate into the dendritic tree, but due to the presence of voltage-dependent potassium channels, probably Kv4.2 channels, attenuate over distance. A mixed population of AMPA receptors with rectifying and linear I-V relations are present at individual spines of a single neuron. Decay kinetics and pharmacology suggest tri-heteromeric NMDA receptors at basolateral-intercalated cell synapses. NMDA receptors are the main contributors to spine calcium entry in response to synaptic stimulation. Calcium signals in response to low- and high-frequency stimulation, and in combination with spontaneous action potentials are locally restricted to the vicinity of active spines. Together, these data show that calcium signalling in these GABAergic neurons is tightly controlled and acts as a local signal. ABSTRACT: The amygdala plays a central role in fear conditioning and extinction. The medial intercalated (mITC) neurons are GABAergic cell clusters interspaced between the basolateral (BLA) and central amygdala (CeA). These neurons are thought to play a key role in fear and extinction, controlling the output of the CeA by feed-forward inhibition. BLA to mITC cell inputs are thought to undergo synaptic plasticity, a mechanism underlying learning, which is mediated by NMDA receptor-dependent mechanisms that require changes in cytosolic calcium. Here, we studied the electrical and calcium signalling properties of mITC neurons in GAD67-eGFP mice using whole-cell patch clamp recordings and two-photon calcium imaging. We show that action potentials back-propagate (bAP) into dendrites, and evoke calcium transients in both the shaft and the dendritic spine. However, bAP-mediated calcium rises in the dendrites attenuate with distance due to shunting by voltage-gated potassium channels. Glutamatergic inputs make dual component synapses on spines. At these synapses, postsynaptic AMPA receptors can have linear or rectifying I-V relationships, indicating that some synapses express GluA2-lacking AMPA receptors. Synaptic NMDA receptors had intermediate decay kinetics, and were only partly blocked by GuN2B selective blockers, indicating these receptors are GluN1/GluN2A/GluN2B trimers. Low- or high-frequency synaptic stimulation raised spine calcium, mediated by calcium influx via NMDA receptors, was locally restricted and did not invade neighbouring spines. Our results show that in mITC neurons, postsynaptic calcium is tightly controlled, and acts as a local signal.


Assuntos
Tonsila do Cerebelo/fisiologia , Sinalização do Cálcio/fisiologia , Dendritos/fisiologia , Potenciais de Ação , Animais , Feminino , Técnicas In Vitro , Masculino , Camundongos Transgênicos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
9.
J Neurosci ; 35(38): 13020-8, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400933

RESUMO

The medial amygdala (MeA) is a central hub in the olfactory neural network. It receives vomeronasal information directly from the accessory olfactory bulb (AOB) and main olfactory information largely via odor-processing regions such as the olfactory cortical amygdala (CoA). How these inputs are processed by MeA neurons is poorly understood. Using the GAD67-GFP mouse, we show that MeA principal neurons receive convergent AOB and CoA inputs. Somatically recorded AOB synaptic inputs had slower kinetics than CoA inputs, suggesting that they are electrotonically more distant. Field potential recording, pharmacological manipulation, and Ca(2+) imaging revealed that AOB synapses are confined to distal dendrites and segregated from the proximally located CoA synapses. Moreover, unsynchronized AOB inputs had significantly broader temporal summation that was dependent on the activation of NMDA receptors. These findings show that MeA principal neurons process main and accessory olfactory inputs differentially in distinct dendritic compartments. Significance statement: In most vertebrates, olfactory cues are processed by two largely segregated neural pathways, the main and accessory olfactory systems, which are specialized to detect odors and nonvolatile chemosignals, respectively. Information from these two pathways ultimately converges at higher brain regions, one of the major hubs being the medial amygdala. Little is known about how olfactory inputs are processed by medial amygdala neurons. This study shows that individual principal neurons in this region receive input from both pathways and that these synapses are spatially segregated on their dendritic tree. We provide evidence suggesting that this dendritic segregation leads to distinct input integration and impact on neuronal output; hence, dendritic mechanisms control olfactory processing in the amygdala.


Assuntos
Vias Aferentes/fisiologia , Complexo Nuclear Corticomedial/citologia , Dendritos/fisiologia , Neurônios/citologia , Bulbo Olfatório/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Vias Aferentes/efeitos dos fármacos , Animais , Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Dendritos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Quinoxalinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Valina/análogos & derivados , Valina/farmacologia
10.
Annu Rev Physiol ; 74: 245-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21942705

RESUMO

Small-conductance Ca(2+)-activated K(+) channels (SK channels) are widely expressed throughout the central nervous system. These channels are activated solely by increases in intracellular Ca(2+). SK channels are stable macromolecular complexes of the ion pore-forming subunits with calmodulin, which serves as the intrinsic Ca(2+) gating subunit, as well as with protein kinase CK2 and protein phosphatase 2A, which modulate Ca(2+) sensitivity. Well-known for their roles in regulating somatic excitability in central neurons, SK channels are also expressed in the postsynaptic membrane of glutamatergic synapses, where their activation and regulated trafficking modulate synaptic transmission and the induction and expression of synaptic plasticity, thereby affecting learning and memory. In this review we discuss the molecular and functional properties of SK channels and their physiological roles in central neurons.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Animais , Cálcio/metabolismo , Cálcio/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/ultraestrutura , Transmissão Sináptica/fisiologia
11.
J Neurosci ; 34(26): 8699-715, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24966371

RESUMO

The medial nucleus of the amygdala (MeA) plays a key role in innate emotional behaviors by relaying olfactory information to hypothalamic nuclei involved in reproduction and defense. However, little is known about the neuronal components of this region or their role in the olfactory-processing circuitry of the amygdala. Here, we have characterized neurons in the posteroventral division of the medial amygdala (MePV) using the GAD67-GFP mouse. Based on their electrophysiological properties and GABA expression, unsupervised cluster analysis divided MePV neurons into three types of GABAergic (Types 1-3) and two non-GABAergic cells (Types I and II). All cell types received olfactory synaptic input from the accessory olfactory bulb and, with the exception of Type 2 GABAergic neurons, sent projections to both reproductive and defensive hypothalamic nuclei. Type 2 GABAergic cells formed a chemically and electrically interconnected network of local circuit inhibitory interneurons that resembled neurogliaform cells of the piriform cortex and provided feedforward inhibition of the olfactory-processing circuitry of the MeA. These findings provide a description of the cellular organization and connectivity of the MePV and further our understanding of amygdala circuits involved in olfactory processing and innate emotions.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Tonsila do Cerebelo/citologia , Animais , Neurônios GABAérgicos/citologia , Masculino , Camundongos , Neurônios/citologia , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia
12.
J Biol Chem ; 289(9): 5399-411, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24425869

RESUMO

Synaptic GABAA receptors (GABAARs) mediate most of the inhibitory neurotransmission in the brain. The majority of these receptors are comprised of α1, ß2, and γ2 subunits. The amygdala, a structure involved in processing emotional stimuli, expresses α2 and γ1 subunits at high levels. The effect of these subunits on GABAAR-mediated synaptic transmission is not known. Understanding the influence of these subunits on GABAAR-mediated synaptic currents may help in identifying the roles and locations of amygdala synapses that contain these subunits. Here, we describe the biophysical and synaptic properties of pure populations of α1ß2γ2, α2ß2γ2, α1ß2γ1 and α2ß2γ1 GABAARs. Their synaptic properties were examined in engineered synapses, whereas their kinetic properties were studied using rapid agonist application, and single channel recordings. All macropatch currents activated rapidly (<1 ms) and deactivated as a function of the α-subunit, with α2-containing GABAARs consistently deactivating ∼10-fold more slowly. Single channel analysis revealed that the slower current decay of α2-containing GABAARs was due to longer burst durations at low GABA concentrations, corresponding to a ∼4-fold higher affinity for GABA. Synaptic currents revealed a different pattern of activation and deactivation to that of macropatch data. The inclusion of α2 and γ1 subunits slowed both the activation and deactivation rates, suggesting that receptors containing these subunits cluster more diffusely at synapses. Switching the intracellular domains of the γ2 and γ1 subunits substantiated this inference. Because this region determines post-synaptic localization, we hypothesize that GABAARs containing γ1 and γ2 use different mechanisms for synaptic clustering.


Assuntos
Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Agonistas de Receptores de GABA-A/farmacologia , Células HEK293 , Humanos , Subunidades Proteicas/agonistas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Receptores de GABA-A/genética , Sinapses/genética
13.
J Neurophysiol ; 112(7): 1616-27, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24944224

RESUMO

Glutamatergic synapses on pyramidal neurons are formed on dendritic spines where glutamate activates ionotropic receptors, and calcium influx via N-methyl-d-aspartate receptors leads to a localized rise in spine calcium that is critical for the induction of synaptic plasticity. In the basolateral amygdala, activation of metabotropic receptors is also required for synaptic plasticity and amygdala-dependent learning. Here, using acute brain slices from rats, we show that, in basolateral amygdala principal neurons, high-frequency synaptic stimulation activates metabotropic glutamate receptors and raises spine calcium by releasing calcium from inositol trisphosphate-sensitive calcium stores. This spine calcium release is unevenly distributed, being present in proximal spines, but largely absent in more distal spines. Activation of metabotropic receptors also generated calcium waves that differentially invaded spines as they propagated toward the soma. Dendritic wave invasion was dependent on diffusional coupling between the spine and parent dendrite which was determined by spine neck length, with waves preferentially invading spines with short necks. Spine calcium is a critical trigger for the induction of synaptic plasticity, and our findings suggest that calcium release from inositol trisphosphate-sensitive calcium stores may modulate homosynaptic plasticity through store-release in the spine head, and heterosynaptic plasticity of unstimulated inputs via dendritic calcium wave invasion of the spine head.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Sinalização do Cálcio , Espinhas Dendríticas/metabolismo , Neurônios/metabolismo , Animais , Feminino , Fosfatos de Inositol/metabolismo , Masculino , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo
14.
J Neurosci ; 32(35): 11930-41, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22933779

RESUMO

It is well established that the activity of chromatin-modifying enzymes is crucial for regulating gene expression associated with hippocampal-dependent memories. However, very little is known about how these epigenetic mechanisms influence the formation of cortically dependent memory, particularly when there is competition between opposing memory traces, such as that which occurs during the acquisition and extinction of conditioned fear. Here we demonstrate, in C57BL/6 mice, that the activity of p300/CBP-associated factor (PCAF) within the infralimbic prefrontal cortex is required for long-term potentiation and is necessary for the formation of memory associated with fear extinction, but not for fear acquisition. Further, systemic administration of the PCAF activator SPV106 enhances memory for fear extinction and prevents fear renewal. The selective influence of PCAF on fear extinction is mediated, in part, by a transient recruitment of the repressive transcription factor ATF4 to the promoter of the immediate early gene zif268, which competitively inhibits its expression. Thus, within the context of fear extinction, PCAF functions as a transcriptional coactivator, which may facilitate the formation of memory for fear extinction by interfering with reconsolidation of the original memory trace.


Assuntos
Condicionamento Psicológico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Fatores de Transcrição de p300-CBP/fisiologia , Animais , Medo/psicologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transativadores/fisiologia
15.
J Neurosci ; 32(24): 8317-30, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699912

RESUMO

The critical role of oligodendrocytes in producing and maintaining myelin that supports rapid axonal conduction in CNS neurons is well established. More recently, additional roles for oligodendrocytes have been posited, including provision of trophic factors and metabolic support for neurons. To investigate the functional consequences of oligodendrocyte loss, we have generated a transgenic mouse model of conditional oligodendrocyte ablation. In this model, oligodendrocytes are rendered selectively sensitive to exogenously administered diphtheria toxin (DT) by targeted expression of the diphtheria toxin receptor in oligodendrocytes. Administration of DT resulted in severe clinical dysfunction with an ascending spastic paralysis ultimately resulting in fatal respiratory impairment within 22 d of DT challenge. Pathologically, at this time point, mice exhibited a loss of ∼26% of oligodendrocyte cell bodies throughout the CNS. Oligodendrocyte cell-body loss was associated with moderate microglial activation, but no widespread myelin degradation. These changes were accompanied with acute axonal injury as characterized by structural and biochemical alterations at nodes of Ranvier and reduced somatosensory-evoked potentials. In summary, we have shown that a death signal initiated within oligodendrocytes results in subcellular changes and loss of key symbiotic interactions between the oligodendrocyte and the axons it ensheaths. This produces profound functional consequences that occur before the removal of the myelin membrane, i.e., in the absence of demyelination. These findings have clear implications for the understanding of the pathogenesis of diseases of the CNS such as multiple sclerosis in which the oligodendrocyte is potentially targeted.


Assuntos
Doenças Desmielinizantes/patologia , Bainha de Mielina/patologia , Oligodendroglia/patologia , Potenciais de Ação/fisiologia , Animais , Axônios/patologia , Axônios/ultraestrutura , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiologia , Contagem de Células/métodos , Contagem de Células/estatística & dados numéricos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/fisiopatologia , Toxina Diftérica/toxicidade , Modelos Animais de Doenças , Potenciais Somatossensoriais Evocados/fisiologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/ultraestrutura , Neurônios/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Medula Espinal/metabolismo , Medula Espinal/patologia
16.
J Physiol ; 591(10): 2381-91, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23420655

RESUMO

Fear conditioning and fear extinction are Pavlovian conditioning paradigms extensively used to study the mechanisms that underlie learning and memory formation. The neural circuits that mediate this learning are evolutionarily conserved, and seen in virtually all species from flies to humans. In mammals, the amygdala and medial prefrontal cortex are two structures that play a key role in the acquisition, consolidation and retrieval of fear memory, as well extinction of fear. These two regions have extensive bidirectional connections, and in recent years, the neural circuits that mediate fear learning and fear extinction are beginning to be elucidated. In this review, we provide an overview of our current understanding of the neural architecture within the amygdala and medial prefrontal cortex. We describe how sensory information is processed in these two structures and the neural circuits between them thought to mediate different aspects of fear learning. Finally, we discuss how changes in circuits within these structures may mediate fear responses following fear conditioning and extinction.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico , Extinção Psicológica , Humanos
17.
J Neurophysiol ; 109(5): 1391-402, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23221411

RESUMO

N-methyl-(D)-aspartate (NMDA) receptors are heteromultimeric ion channels that contain an essential GluN1 subunit and two or more GluN2 (GluN2A-GluN2D) subunits. The biophysical properties and physiological roles of synaptic NMDA receptors are dependent on their subunit composition. In the basolateral amygdala (BLA), it has been suggested that the plasticity that underlies fear learning requires activation of heterodimeric receptors composed of GluN1/GluN2B subunits. In this study, we investigated the subunit composition of NMDA receptors present at synapses on principal neurons in the BLA. Purification of the synaptic fraction showed that both GluN2A and GluN2B subunits are present at synapses, and co-immunoprecipitation revealed the presence of receptors containing both GluN2A and GluN2B subunits. The kinetics of NMDA receptor-mediated synaptic currents and pharmacological blockade indicate that heterodimeric GluN1/GluN2B receptors are unlikely to be present at glutamatergic synapses on BLA principal neurons. Selective RNA interference-mediated knockdown of GluN2A subunits converted synaptic receptors to a GluN1/GluN2B phenotype, whereas knockdown of GluN2B subunits had no effect on the kinetics of the synaptically evoked NMDA current. Blockade of GluN1/GluN2B heterodimers with ifenprodil had no effect, but knockdown of GluN2B disrupted the induction of CaMKII-dependent long-term potentiation at these synapses. These results suggest that, on BLA principal neurons, GluN2B subunits are only present as GluN1/GluN2A/GluN2B heterotrimeric NMDA receptors. The GluN2B subunit has little impact on the kinetics of the receptor, but is essential for the recruitment of signaling molecules essential for synaptic plasticity.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Tonsila do Cerebelo/citologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Células HEK293 , Humanos , Potenciação de Longa Duração , Masculino , Neurônios/metabolismo , Piperidinas/farmacologia , Multimerização Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia
18.
Curr Opin Neurobiol ; 80: 102712, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003106

RESUMO

Associative learning induces physical changes to a network of cells, known as the memory engram. Fear is widely used as a model to understand the circuit motifs that underpin associative memories. Recent advances suggest that the distinct circuitry engaged by different conditioned stimuli (e.g. tone vs. context) can provide insights into what information is being encoded in the fear engram. Moreover, as the fear memory matures, the circuitry engaged indicates how information is remodelled after learning and hints at potential mechanisms for consolidation. Finally, we propose that the consolidation of fear memories involves plasticity of engram cells through coordinated activity between brain regions, and the inherent characteristics of the circuitry may mediate this process.


Assuntos
Aprendizagem , Memória , Condicionamento Clássico , Medo
19.
STAR Protoc ; 4(3): 102414, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37436903

RESUMO

Memory processes are highly dependent on a cross-talk between brain regions via synchronized neural oscillations. Here, we present a protocol to perform multi-site electrophysiological recordings in vivo in freely moving rodents to investigate functional connectivity across brain regions during memory processes. We describe steps for recording local field potentials (LFPs) during behavior, extracting LFP bands, and analyzing synchronized LFP activity across brain regions. This technique also provides the potential to simultaneously assess single unit activity using tetrodes. For complete details on the use and execution of this protocol, please refer to Wang et al.1.


Assuntos
Encéfalo , Roedores , Animais , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos
20.
Front Neural Circuits ; 17: 1095441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925563

RESUMO

The pedunculopontine nucleus (PPN) is the major part of the mesencephalic locomotor region, involved in the control of gait and locomotion. The PPN contains glutamatergic, cholinergic, and GABAergic neurons that all make local connections, but also have long-range ascending and descending connections. While initially thought of as a region only involved in gait and locomotion, recent evidence is showing that this structure also participates in decision-making to initiate movement. Clinically, the PPN has been used as a target for deep brain stimulation to manage freezing of gait in late Parkinson's disease. In this review, we will discuss current thinking on the role of the PPN in locomotor control. We will focus on the cytoarchitecture and functional connectivity of the PPN in relationship to motor control.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Humanos , Doença de Parkinson/terapia , Locomoção , Mesencéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA