Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Reprod ; 36(3): 756-770, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33313811

RESUMO

STUDY QUESTION: Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)? SUMMARY ANSWER: The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes. WHAT IS KNOWN ALREADY: Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis. STUDY DESIGN, SIZE, DURATION: Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected FF from hSAF of ovaries that had been surgically removed from 31 women (∼28.5 years old) undergoing unilateral ovariectomy for fertility preservation. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation. LIMITATIONS, REASONS FOR CAUTION: A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons. WIDER IMPLICATIONS OF THE FINDINGS: This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation. STUDY FUNDING/COMPETING INTEREST(S): The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Folículo Ovariano , Proteoma , Adulto , Feminino , Líquido Folicular , Humanos , Oócitos , Oogênese
2.
Scand J Clin Lab Invest ; 80(1): 25-31, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31738571

RESUMO

Testosterone deficiency in males is associated with serious comorbidities such as cardiovascular disease, diabetes type two, and also an increased risk of premature death. The pathogenetic mechanism behind this association, however, has not yet been clarified and is potentially bidirectional. The aim of this clinical trial was to gain insight into the short-term effect of changes in testosterone on blood analytes in healthy young men. Thirty healthy young male volunteers were recruited and monitored in our designed human model. Blood sampling was performed prior to and 3 weeks after pharmacological castration with a gonadotropin-releasing hormone antagonist. Subsequently, testosterone replacement with 1000 mg testosterone undecanoate was given and additional blood samples were collected 2 weeks later. The alterations in the levels of 37 routine biomarkers were statistically analysed. Eight biomarkers changed significantly in a similar manner as testosterone between the time points (e.g. prostate specific antigen, creatinine and magnesium), whereas seven other markers changed in the inverse manner as testosterone, including sexual hormone-binding globulin, urea, aspartate aminotransferase and alanine aminotransferase. Most of our results were supported by data from other studies. The designed controlled human model yielded changes in known biomarkers suggesting that low testosterone has a negative effect on health in young healthy men.


Assuntos
Biomarcadores/sangue , Testosterona/análogos & derivados , Testosterona/sangue , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Voluntários Saudáveis , Humanos , Libido/efeitos dos fármacos , Hormônio Luteinizante/sangue , Masculino , Antígeno Prostático Específico/sangue , Testosterona/efeitos adversos , Testosterona/deficiência , Testosterona/farmacologia , Fatores de Tempo
3.
Scand J Med Sci Sports ; 26(7): 764-73, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26271931

RESUMO

The primary aim of this study was to investigate the effect of short-term resistance training (RET) on mitochondrial protein content and glucose tolerance in elderly. Elderly women and men (age 71 ± 1, mean ± SEM) were assigned to a group performing 8 weeks of resistance training (RET, n = 12) or no training (CON, n = 9). The RET group increased in (i) knee extensor strength (concentric +11 ± 3%, eccentric +8 ± 3% and static +12 ± 3%), (ii) initial (0-30 ms) rate of force development (+52 ± 26%) and (iii) contents of proteins related to signaling of muscle protein synthesis (Akt +69 ± 20 and mammalian target of rapamycin +69 ± 32%). Muscle fiber type composition changed to a more oxidative profile in RET with increased amount of type IIa fibers (+26.9 ± 6.8%) and a trend for decreased amount of type IIx fibers (-16.4 ± 18.2%, P = 0.068). Mitochondrial proteins (OXPHOS complex II, IV, and citrate synthase) increased in RET by +30 ± 11%, +99 ± 31% and +29 ± 8%, respectively. RET resulted in improved oral glucose tolerance measured as reduced area under curve for glucose (-21 ± 26%) and reduced plasma glucose 2 h post-glucose intake (-14 ± 5%). In CON parameters were unchanged or impaired. In conclusion, short-term resistance training in elderly not only improves muscular strength, but results in robust increases in several parameters related to muscle aerobic capacity.


Assuntos
Glicemia/metabolismo , Proteínas Mitocondriais/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Músculo Esquelético/metabolismo , Treinamento Resistido , Serina-Treonina Quinases TOR/metabolismo , Idoso , Idoso de 80 Anos ou mais , Citrato (si)-Sintase/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Tolerância ao Exercício , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-akt
4.
Scand J Med Sci Sports ; 25(4): e353-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25438613

RESUMO

The molecular signaling of mitochondrial biogenesis is enhanced when resistance exercise is added to a bout of endurance exercise. The purpose of the present study was to examine if this mode of concurrent training translates into increased mitochondrial content and improved endurance performance. Moderately trained cyclists performed 8 weeks (two sessions per week) of endurance training only (E, n = 10; 60-min cycling) or endurance training followed by strength training (ES, n = 9; 60-min cycling + leg press). Muscle biopsies were obtained before and after the training period and analyzed for enzyme activities and protein content. Only the ES group increased in leg strength (+19%, P < 0.01), sprint peak power (+5%, P < 0.05), and short-term endurance (+9%, P < 0.01). In contrast, only the E group increased in muscle citrate synthase activity (+11%, P = 0.06), lactate threshold intensity (+3%, P < 0.05), and long-term endurance performance (+4%, P < 0.05). Content of mitochondrial proteins and cycling economy was not affected by training. Contrary to our hypothesis, the results demonstrate that concurrent training does not enhance muscle aerobic capacity and endurance performance in cyclists.


Assuntos
Ciclismo/fisiologia , Condicionamento Físico Humano/métodos , Condicionamento Físico Humano/fisiologia , Resistência Física/fisiologia , Músculo Quadríceps/metabolismo , Treinamento Resistido , Adulto , Limiar Anaeróbio , Citrato (si)-Sintase/metabolismo , Humanos , Ácido Láctico/sangue , Perna (Membro) , Masculino , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Força Muscular , Consumo de Oxigênio , Músculo Quadríceps/fisiologia
5.
Life (Basel) ; 12(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35330141

RESUMO

Polycystic ovaries (PCO) contain antral follicles that arrest growing around 3-11 mm in diameter, perturbing the dominant follicle's selection and the subsequent ovulatory process. Proteomic alterations of PCO follicular fluid (FF) (i.e., microenvironment in which the oocyte develops until ovulation) have been studied from large follicles in connection with oocyte pickup during ovarian stimulation. The present study aimed to detect proteomic alterations in FF from unstimulated human small antral follicles (hSAF) obtained from PCO. After performing deep-sequencing label-free proteomics on 10 PCO and 10 non-PCO FF samples from unstimulated hSAF (4.6-9.8 mm), 1436 proteins were identified, of which 115 were dysregulated in PCO FF samples. Pathways and processes related to the immune system, inflammation, and oxidative stress appeared to be upregulated in PCO, while extracellular matrix receptors interactions, the collagens-containing extracellular matrix, and the regulation of signaling were downregulated. The secreted proteins SFRP1, THBS4, and C1QC significantly decreased their expression in PCO FF, and this downregulation was suggested to affect future oocyte competence. In conclusion, our study revealed, for the first time, evidence of proteomic alterations occurring in the FF of PCO hSAF that may be related to the dysfunction of follicular growth and subsequent oocyte competence.

6.
Sci Rep ; 12(1): 15931, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151245

RESUMO

Testosterone is a hormone that plays a key role in carbohydrate, fat, and protein metabolism. Testosterone deficiency is associated with multiple comorbidities, e.g., metabolic syndrome and type 2 diabetes. Despite its importance in many metabolic pathways, the mechanisms by which it controls metabolism are not fully understood. The present study investigated the short-term metabolic changes of pharmacologically induced castration and, subsequently, testosterone supplementation in healthy young males. Thirty subjects were submitted to testosterone depletion (TD) followed by testosterone supplementation (TS). Plasma samples were collected three times corresponding to basal, low, and restored testosterone levels. An untargeted metabolomics study was performed by liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to monitor the metabolic changes induced by the altered hormone levels. Our results demonstrated that TD was associated with major metabolic changes partially restored by TS. Carnitine and amino acid metabolism were the metabolic pathways most impacted by variations in testosterone. Furthermore, our results also indicated that LH and FSH might strongly alter the plasma levels of indoles and lipids, especially glycerophospholipids and sphingolipids. Our results demonstrated major metabolic changes induced by low testosterone that may be important for understanding the mechanisms behind the association of testosterone deficiency and its comorbidities.


Assuntos
Infertilidade Masculina , Metaboloma , Testosterona , Aminoácidos/metabolismo , Carboidratos , Carnitina , Suplementos Nutricionais , Hormônio Foliculoestimulante , Glicerofosfolipídeos , Humanos , Indóis , Infertilidade Masculina/induzido quimicamente , Lipídeos , Hormônio Luteinizante , Masculino , Esfingolipídeos , Testosterona/farmacologia
7.
Elife ; 112022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230239

RESUMO

BACKGROUND: Reliable biomarkers of androgen activity in humans are lacking. The aim of this study was, therefore, to identify new protein markers of biological androgen activity and test their predictive value in relation to low vs normal testosterone values and some androgen deficiency linked pathologies. METHODS: Blood samples from 30 healthy GnRH antagonist treated males were collected at three time points: (1) before GnRH antagonist administration; (2) 3 weeks later, just before testosterone undecanoate injection, and (3) after additional 2 weeks. Subsequently, they were analyzed by mass spectrometry to identify potential protein biomarkers of testosterone activity. Levels of proteins most significantly associated with testosterone fluctuations were further tested in a cohort of 75 hypo- and eugonadal males suffering from infertility. Associations between levels of those markers and cardiometabolic parameters, bone mineral density as well as androgen receptor (AR) CAG repeat lengths, were explored. RESULTS: Using receiver operating characteristic analysis, 4-hydroxyphenylpyruvate dioxygenase (4HPPD), insulin-like growth factor-binding protein 6 (IGFBP6), and fructose-bisphosphate aldolase (ALDOB), as well as a Multi Marker Algorithm, based on levels of 4HPPD and IGFBP6, were shown to be best predictors of low (<8 nmol/l) vs normal (>12 nmol/l) testosterone. They were also more strongly associated with metabolic syndrome and diabetes than testosterone levels. Levels of ALDOB and 4HPPD also showed association with AR CAG repeat lengths. CONCLUSIONS: We identified potential new protein biomarkers of testosterone action. Further investigations to elucidate their clinical potential are warranted. FUNDING: The work was supported by ReproUnion2.0 (grant no. 20201846), which is funded by the Interreg V EU program.


Although it is best known for its role in developing male sex organs and maintaining sexual function, the hormone testosterone is important for many parts of the human body. A deficiency can cause an increased risk of serious conditions such as diabetes, cancer and osteoporosis. Testosterone deficiency can develop due to disease or age-related changes, and men affected by this can be given supplements of this hormone to restore normal levels. The most common way to test for testosterone deficiency is by measuring the concentration of the hormone in the blood. However, this does not accurately reflect the activity of the hormone in the body. This may lead to men who need more testosterone not receiving enough, and to others being unnecessarily treated. Several factors may lead to discrepancy between testosterone concentration in blood and its physiological activity. One of the most common is obesity. Additionally, certain genetic factors, which cannot be controlled for yet, regulate sensitivity to this hormone: some people do well at low levels, while others need high concentrations to be healthy. Therefore, to improve the diagnosis of testosterone deficiency it is necessary to identify biological markers whose levels act as a proxy for testosterone activity. Giwercman, Sahlin et al. studied the levels of a large number of proteins in the blood of 30 young men before and after blocking testosterone production. The analysis found three proteins whose concentrations changed significantly after testosterone deprivation. Giwercman, Sahlin et al. then validated these markers for testosterone deficiency by checking the levels of the three proteins in a separate group of 75 men with fertility problems. The results also showed that the three protein markers were better at predicting diabetes and metabolic syndrome than testosterone levels alone. These newly discovered markers could be used to create a test for measuring testosterone activity. This could help to identify deficiencies and finetune the amount of supplementary hormone given to men as treatment. However, further research is needed to understand the clinical value of such a test in men, as well as women and children.


Assuntos
Androgênios , Proteômica , Biomarcadores , Hormônio Liberador de Gonadotropina , Humanos , Masculino , Proteínas , Receptores Androgênicos , Testosterona/metabolismo
8.
Life (Basel) ; 11(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833152

RESUMO

Long term effect of testosterone (T) deficiency impairs metabolism and is associated with muscle degradation and metabolic disease. The association seems to have a bidirectional nature and is not well understood. The present study aims to investigate the early and unidirectional metabolic effect of induced T changes by measuring fasting amino acid (AA) levels in a human model, in which short-term T alterations were induced. We designed a human model of 30 healthy young males with pharmacologically induced T changes, which resulted in three time points for blood collection: (A) baseline, (B) low T (3 weeks post administration of gonadotropin releasing hormone antagonist) and (C) restored T (2 weeks after injection of T undecanoate). The influence of T on AAs was analyzed by spectrophotometry on plasma samples. Levels of 9 out of 23 AAs, of which 7 were essential AAs, were significantly increased at low T and are restored upon T supplementation. Levels of tyrosine and phenylalanine were most strongly associated to T changes. Short-term effect of T changes suggests an increased protein breakdown that is restored upon T supplementation. Fasting AA levels are able to monitor the early metabolic changes induced by the T fluctuations.

9.
Cancers (Basel) ; 13(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944842

RESUMO

Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its large dynamic range of 10 orders in magnitude. We created a methodology for protein identification known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs together with custom protein databases for ID generation. This entails a multi-level dynamic protein database with different immunodepletion strategies by applying single-shot proteomics. The highest number of melanoma plasma proteins from undepleted and unfractionated plasma was reported, mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences. We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided an output in which 12 previously well-known candidate markers were identified. We also identified low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and (iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins. WiMT holds the potential for use in large-scale screening studies with simple sample preparation, and can lead to the discovery of novel proteins with key melanoma disease functions.

10.
Diabetologia ; 53(9): 1976-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20526759

RESUMO

AIM/HYPOTHESIS: Studies have suggested a link between insulin resistance and mitochondrial dysfunction in skeletal muscles. Our primary aim was to investigate the effect of aerobic training on mitochondrial respiration and mitochondrial reactive oxygen species (ROS) release in skeletal muscle of obese participants with and without type 2 diabetes. METHODS: Type 2 diabetic men (n = 13) and control (n = 14) participants matched for age, BMI and physical activity completed 10 weeks of aerobic training. Pre- and post-training muscle biopsies were obtained before a euglycaemic-hyperinsulinaemic clamp and used for measurement of respiratory function and ROS release in isolated mitochondria. RESULTS: Training significantly increased insulin sensitivity, maximal oxygen consumption and muscle mitochondrial respiration with no difference between groups. When expressed in relation to a marker of mitochondrial density (intrinsic mitochondrial respiration), training resulted in increased mitochondrial ADP-stimulated respiration (with NADH-generating substrates) and decreased respiration without ADP. Intrinsic mitochondrial respiration was not different between groups despite lower insulin sensitivity in type 2 diabetic participants. Mitochondrial ROS release tended to be higher in participants with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Aerobic training improves muscle respiration and intrinsic mitochondrial respiration in untrained obese participants with and without type 2 diabetes. These adaptations demonstrate an increased metabolic fitness, but do not seem to be directly related to training-induced changes in insulin sensitivity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/economia , Espécies Reativas de Oxigênio/metabolismo
11.
Diabetes Obes Metab ; 11(9): 874-83, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19531056

RESUMO

AIM: Insulin resistance in subjects with type 2 diabetes (T2D) and obesity is associated with an imbalance between the availability and the oxidation of lipids. We hypothesized that maximal whole-body lipid oxidation during exercise (FATmax) is reduced and that training-induced metabolic adaptation is attenuated in T2D. METHODS: Obese T2D (n = 12) and control (n = 11) subjects matched for age, sex, physical activity and body mass index completed 10 weeks of aerobic training. Subjects were investigated before and after training with maximal and submaximal exercise tests and euglycaemic-hyperinsulinaemic clamps combined with muscle biopsies. RESULTS: Training increased maximal oxygen consumption (VO(2max)) and muscle citrate synthase activity and decreased blood lactate concentrations during submaximal exercise in both groups (all p < 0.01). FATmax increased markedly (40-50%) in both T2D and control subjects after training (all p < 0.001). There were no significant differences in these variables and lactate threshold (%VO(2max)) between groups before or after training. Insulin-stimulated glucose disappearance rate (Rd) was lower in T2D vs. control subjects both before and after training. Rd increased in response to training in both groups (all p < 0.01). There was no correlation between Rd and measures of oxidative capacity or lipid oxidation during exercise or the training-induced changes in these parameters. CONCLUSIONS: FATmax was not reduced in T2D, and muscle oxidative capacity increased adequately in response to aerobic training in obese subjects with and without T2D. These metabolic adaptations to training seem to be unrelated to changes in insulin sensitivity and indicate that an impaired capacity for lipid oxidation is not a major cause of insulin resistance in T2D.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Exercício Físico/fisiologia , Metabolismo dos Lipídeos/fisiologia , Citrato (si)-Sintase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiologia , Feminino , Glucose/metabolismo , Humanos , Resistência à Insulina/fisiologia , Ácido Láctico/sangue , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Obesidade/fisiopatologia , Oxirredução , Consumo de Oxigênio/fisiologia
12.
ACS Chem Neurosci ; 9(1): 73-79, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29254333

RESUMO

Glioblastoma (GBM), the most malignant of primary brain tumors, is a devastating and deadly disease, with a median survival of 14 months from diagnosis, despite standard regimens of radical brain tumor surgery, maximal safe radiation, and concomitant chemotherapy. GBM tumors nearly always re-emerge after initial treatment and frequently display resistance to current treatments. One theory that may explain GBM re-emergence is the existence of glioma stemlike cells (GSCs). We sought to identify variant protein features expressed in low passage GSCs derived from patient tumors. To this end, we developed a proteomic database that reflected variant and nonvariant sequences in the human proteome, and applied a novel retrograde proteomic workflow, to identify and validate the expression of 126 protein variants in 33 glioma stem cell strains. These newly identified proteins may harbor a subset of novel protein targets for future development of GBM therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteoma , Células Cultivadas , Humanos , Proteômica
13.
J Clin Invest ; 88(4): 1197-206, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1918374

RESUMO

We evaluated a 22-yr-old Swedish man with lifelong exercise intolerance marked by premature exertional muscle fatigue, dyspnea, and cardiac palpitations with superimposed episodes lasting days to weeks of increased muscle fatigability and weakness associated with painful muscle swelling and pigmenturia. Cycle exercise testing revealed low maximal oxygen uptake (12 ml/min per kg; healthy sedentary men = 39 +/- 5) with exaggerated increases in venous lactate and pyruvate in relation to oxygen uptake (VO2) but low lactate/pyruvate ratios in maximal exercise. The severe oxidative limitation was characterized by impaired muscle oxygen extraction indicated by subnormal systemic arteriovenous oxygen difference (a-v O2 diff) in maximal exercise (patient = 4.0 ml/dl, normal men = 16.7 +/- 2.1) despite normal oxygen carrying capacity and Hgb-O2 P50. In contrast maximal oxygen delivery (cardiac output, Q) was high compared to sedentary healthy men (Qmax, patient = 303 ml/min per kg, normal men 238 +/- 36) and the slope of increase in Q relative to VO2 (i.e., delta Q/delta VO2) from rest to exercise was exaggerated (delta Q/delta VO2, patient = 29, normal men = 4.7 +/- 0.6) indicating uncoupling of the normal approximately 1:1 relationship between oxygen delivery and utilization in dynamic exercise. Studies of isolated skeletal muscle mitochondria in our patient revealed markedly impaired succinate oxidation with normal glutamate oxidation implying a metabolic defect at the level of complex II of the mitochondrial respiratory chain. A defect in Complex II in skeletal muscle was confirmed by the finding of deficiency of succinate dehydrogenase as determined histochemically and biochemically. Immunoblot analysis showed low amounts of the 30-kD (iron-sulfur) and 13.5-kD proteins with near normal levels of the 70-kD protein of complex II. Deficiency of succinate dehydrogenase was associated with decreased levels of mitochondrial aconitase assessed enzymatically and immunologically whereas activities of other tricarboxylic acid cycle enzymes were increased compared to normal subjects. The exercise findings are consistent with the hypothesis that this defect impairs muscle oxidative metabolism by limiting the rate of NADH production by the tricarboxylic acid cycle.


Assuntos
Aconitato Hidratase/deficiência , Exercício Físico , Músculos/metabolismo , Consumo de Oxigênio , Succinato Desidrogenase/deficiência , Adulto , Ciclo do Ácido Cítrico , Humanos , Masculino , Mitocôndrias/metabolismo , Músculos/ultraestrutura , NAD/metabolismo
14.
Clin Transl Med ; 5(1): 9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26951192

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an irreversible disease, diagnosed predominantly in smokers. COPD is currently the third leading cause of death worldwide. Far more than 15 % of smokers get COPD: in fact, most develop some amount of pulmonary impairment. Smoking-related COPD is associated with both acute exacerbations and is closely correlated to comorbidities, such as cardiovascular disease and lung cancer. The objective of our study (KOL-Örestad) is to identify biomarkers in smokers and ex-smokers, with early signs of COPD, and compare these biomarkers with those of non-smokers and healthy smokers/ex-smokers. The participants in the study are recruited from Örestadskliniken, a primary health care clinic in Malmö, Sweden. METHODS: Two hundred smokers and ex-smokers diagnosed with COPD with airflow restriction according to GOLD stages 1-4 will be included and compared with 50 healthy never-smokers, and 50 healthy smokers/ex-smokers without airflow restriction (total n = 300). The age distribution is 35-80 years. The participants undergo a health examination including medical history, smoking history, lung function measurements, and respond to a "Quality of Life" questionnaire. Blood samples are drawn every 6 months during a period of 5 years. Additional blood sample collection is performed if participants are experiencing an exacerbation. The blood fractions will be analyzed by standard clinical chemistry assays and by proteomics utilizing mass spectrometry platforms. Optimal sample integrity is ensured by rapid handling with robotic biobank processing followed by storage at -80 °C. The study has been approved by the Regional Ethical Review Board in Lund ( http://epn.se/en ), (Approval number: DNR 2013/480), and registered at the NIH clinical trial registry ( http://clinicaltrials.gov ). RESULTS AND DISCUSSION: Currently, 220 subjects are enrolled in the study. CONCLUSIONS AND FUTURE DIRECTIONS: The study design will enable discovery of new biomarkers by using novel mass spectrometric techniques that define early changes of COPD. Such panels of novel biomarkers may be able to distinguish COPD from closely related diseases, co-morbidities, and contribute to an increased understanding of these diseases. Graphical abstract KOL-Örestad Study.

15.
Biochim Biophys Acta ; 1504(2-3): 379-95, 2001 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11245802

RESUMO

Regulation of mitochondrial respiration in situ in the muscle cells was studied by using fully permeabilized muscle fibers and cardiomyocytes. The results show that the kinetics of regulation of mitochondrial respiration in situ by exogenous ADP are very different from the kinetics of its regulation by endogenous ADP. In cardiac and m. soleus fibers apparent K(m) for exogenous ADP in regulation of respiration was equal to 300-400 microM. However, when ADP production was initiated by intracellular ATPase reactions, the ADP concentration in the medium leveled off at about 40 microM when about 70% of maximal rate of respiration was achieved. Respiration rate maintained by intracellular ATPases was suppressed about 20-30% during exogenous trapping of ADP with excess pyruvate kinase (PK, 20 IU/ml) and phosphoenolpyruvate (PEP, 5 mM). ADP flux via the external PK+PEP system was decreased by half by activation of mitochondrial oxidative phosphorylation. Creatine (20 mM) further activated the respiration in the presence of PK+PEP. It is concluded that in oxidative muscle cells mitochondria behave as if they were incorporated into functional complexes with adjacent ADP producing systems - with the MgATPases in myofibrils and Ca,MgATPases of sarcoplasmic reticulum.


Assuntos
ATPase de Ca(2+) e Mg(2+)/metabolismo , Mitocôndrias Musculares/enzimologia , Fibras Musculares Esqueléticas/enzimologia , Retículo Sarcoplasmático/enzimologia , Difosfato de Adenosina/biossíntese , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Fosfatos de Dinucleosídeos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Musculares/efeitos dos fármacos , Modelos Químicos , Miocárdio/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
16.
Diabetes ; 39(2): 157-67, 1990 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2121571

RESUMO

We searched for metabolic crossover points in muscle glucose metabolite profiles during maintenance of matched glucose fluxes across forearm muscle in insulin-resistant type I (insulin-dependent) diabetic patients and nondiabetic subjects. To classify subjects as insulin sensitive or insulin resistant, whole-body and forearm glucose disposal, oxidative and nonoxidative glucose disposal (indirect calorimetry), and glycogen synthesis (muscle glycogen content in needle biopsies) were measured under euglycemic conditions at two insulin concentrations. Whole-body and forearm muscle glucose disposal were significantly reduced in diabetic patients compared with control subjects. The reduction in total glucose disposal was due to similar relative reductions in oxidative and nonoxidative glucose disposal, pointing toward rate limitation early in glucose metabolism. The defect in nonoxidative glucose disposal was at least partly due to a defect in muscle glycogen synthesis, because muscle glycogen content failed to increase in response to an increase in the plasma insulin concentration in the diabetic patients. The most-insulin-resistant type 1 diabetic patients were restudied under conditions where, by glucose mass action, whole-body glucose disposal was forced to be similar to that in the control subjects. Matching glucose fluxes in the two groups resulted in similar rates of forearm and whole-body oxidative and nonoxidative glucose disposal and muscle glycogen synthesis, but it did not result in accumulation of free intracellular glucose, glucose-6-phosphate, glucose-1-phosphate, fructose-6-phosphate, or lactate in muscle. These data imply that the rate-limiting defect for glucose disposal in skeletal muscle of type I diabetic patients is at the level of glucose transport.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Insulina/uso terapêutico , Músculos/metabolismo , Adulto , Transporte Biológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/fisiopatologia , Glucose/farmacocinética , Glicogênio/sangue , Glicogênio Sintase/metabolismo , Humanos , Taxa de Depuração Metabólica , Músculos/enzimologia , Oxirredução
17.
PM R ; 7(10): 1081-1088, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25828205

RESUMO

Physical activity and exercise is the mainstay of chronic disease prevention and health maintenance for all people with and without a disability, and clear evidence exists of the benefits among various populations with neurologic disabilities. However, the potential benefits of organized sports for people with neurologic disabilities are not as well explored. In this narrative review, current evidence regarding the impact of organized sports on activity, participation, and quality of life in people with neurologic disabilities of all ages is summarized, and facilitators of and barriers to participation in sports for this population are discussed. The articles reviewed were divided into 2 sets: (1) children and adolescents and (2) adults. The subjects of almost all of the studies were persons with a spinal cord injury. Children and adolescents with a disability who engaged in sports reported self-concept scores close to those of able-bodied athletes, as well as higher levels of physical activity. Adults with a spinal cord injury who engaged in organized sports reported decreased depression and anxiety, increased life satisfaction, and increased opportunity for gainful employment compared with nonathletic persons with disabilities. General facilitators, regardless of age, were fitness, fun, health, competence, and social aspects, whereas overall barriers were lack of or inappropriate medical advice and facilities, decreased self-esteem, poor finances, dependency on others, and views held by others. The importance of this topic for further research is highlighted, and suggestions for future studies are proposed.


Assuntos
Pessoas com Deficiência/psicologia , Doenças do Sistema Nervoso/psicologia , Qualidade de Vida , Autoimagem , Participação Social/psicologia , Esportes , Adolescente , Adulto , Criança , Humanos , Adulto Jovem
19.
J Appl Physiol (1985) ; 65(2): 509-18, 1988 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-3049511

RESUMO

Lactic acid accumulates in contracting muscle and blood beginning at approximately 50-70% of the maximal O2 uptake, well before the aerobic capacity is fully utilized. The classical explanation has been that part of the muscle is O2 deficient and therefore lactate production is increased to provide supplementary anaerobically derived energy. Currently, however, the predominant view is that lactate production during submaximal dynamic exercise is not O2 dependent. In the present review, data and arguments in support of and against the hypothesis of O2 dependency have been scrutinized. Data underlying the conclusion that lactate production during exercise is not O2 dependent were found to be 1) questionable, or 2) interpretable in an alternative manner. Experiments in human and animal muscles under various conditions demonstrated that the redox state of the muscle is reduced (i.e., NADH is increased) either before or in parallel with increases in muscle lactate. Based on experimental data and theoretical considerations, it is concluded that lactate production during submaximal exercise is O2 dependent. The amount of energy provided through the anaerobic processes during steady-state submaximal exercise is, however, low, and the role of lactate formation as an energy source is of minor importance. It is proposed that the achievement of increased aerobic energy formation under conditions of limiting O2 availability requires increases of ADP, Pi, and NADH and that the increases in ADP (and therefore AMP via the adenylate kinase equilibrium) and Pi will stimulate glycolysis, and the resulting increase in cytosolic NADH will shift the lactate dehydrogenase equilibrium toward increased lactate production.


Assuntos
Lactatos/metabolismo , Músculos/metabolismo , Consumo de Oxigênio , Esforço Físico , Animais , Humanos , Ácido Láctico , Contração Muscular , NAD/metabolismo , Oxirredução
20.
J Appl Physiol (1985) ; 65(6): 2475-7, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3215846

RESUMO

Eight healthy men exercised to exhaustion on a cycle ergometer at a work load of 176 +/- 9 (SE) W corresponding to 67% (range 63-69%) of their maximal O2 uptake (exercise I). Exercise of the same work load was repeated after 75 min of recovery (exercise II). Exercise duration (range) was 65 (50-90) and 21 (14-30) min for exercise I and II, respectively. Femoral venous blood samples were obtained before and during exercise and analyzed for NH3 and lactate. Plasma NH3 was 12 +/- 2 and 19 +/- 6 mumol/l before exercise I and II, respectively and increased during exercise to exhaustion to peak values of 195 +/- 29 (exercise I) and 250 +/- 30 (exercise II) mumol/l, respectively. Plasma NH3 increased faster during exercise II compared with exercise I and at the end of exercise II was threefold higher than the value for the corresponding time of exercise I (P less than 0.001). Blood lactate increased during exercise I and after 20 min of exercise was 3.7 +/- 0.4 mmol/l and remained unchanged until exhaustion. During exercise II blood lactate increased less than during exercise I. It is concluded that long-term exercise to exhaustion results in large increases in plasma NH3 despite relatively low levels of blood lactate. It is suggested that the faster increase in plasma NH3 during exercise II (vs. exercise I) reflects an increased formation in the working muscle that may be caused by low glycogen levels and impairment of the ATP resynthesis.


Assuntos
Amônia/sangue , Glicogênio/metabolismo , Esforço Físico , Nucleotídeos de Adenina/metabolismo , Adulto , Fadiga/metabolismo , Humanos , Lactatos/sangue , Ácido Láctico , Masculino , Contração Muscular , Músculos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA