Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(4): e4070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845544

RESUMO

In this study, we report the cardioprotective effect of the glycerol monooleate (GMO) based nanocurcumin in both in vitro and in vivo conditions under a hyperthyroid state. The heart is one of the primary target organs sensitive to the action of thyroid hormone, and slight variations in the thyroid hormone serum concentrations result in measurable changes in cardiac performance. Hyperthyroidism-induced hypermetabolism is associated with oxidative stress and is an important mechanism responsible for the progression of heart failure. Curcumin has been known to play a protective role against oxidative stress-related diseases like Alzheimer's, asthma, and aging due to its antioxidant properties. Nevertheless, its potent biological activity has been hindered due to its poor bioavailability. To overcome this drawback, a GMO-based biodegradable nanoparticle (NP) formulation loaded with curcumin has been developed, and the protective effect of curcumin-loaded NPs was compared against the native drug. Oxidative stress parameters like reactive oxygen species (ROS) release, change in mitochondrial membrane permeability, lipid peroxidation (LPx), lactate dehydrogenase (LDH) release, and the activity and protein expression of the endogenous antioxidant enzymes like superoxide dismutase, catalase (CAT) and glutathione peroxidase were evaluated. The results from in vitro showed that curcumin-loaded NPs showed better DPPH and NO radical scavenging activity than native curcumin in a concentrations range of 2.5-20 µM. It was also observed that the nanoparticulate curcumin was comparatively more effective than native curcumin in protecting against ROS-induced membrane damage by reducing LPx and LDH leakage at low concentrations of 5-10 µM. Further, curcumin NPs performed better in facilitating the activities of antioxidant enzymes under in vitro and in vivo conditions with respect to time and concentrations, resulting in reduced cellular ROS levels. In this scenario, we anticipate that curcumin-loaded NPs can serve as a better antioxidant than its native counterpart in protecting the heart from oxidative stress-related diseases.


Assuntos
Curcumina , Nanopartículas , Estresse Oxidativo , Ratos Wistar , Curcumina/farmacologia , Curcumina/química , Animais , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Ratos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Coração/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos
2.
Cell Biochem Funct ; 42(3): e4022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655589

RESUMO

Over the years, the administration of antibiotics for the purpose of addressing bacterial infections has become increasingly challenging due to the increased prevalence of antimicrobial resistance exhibited by various strains of bacteria. Multidrug-resistant (MDR) bacterial species are rising due to the unavailability of novel antibiotics, leading to higher mortality rates. With these conditions, there is a need for alternatives in which phage therapy has made promising results. Phage-derived endolysins, phage cocktails, and bioengineered phages are effective and have antimicrobial properties against MDR and extensively drug-resistant strains. Despite these, it has been observed that phages can give antimicrobial activity to more than one bacterial species. Thus, phage cocktail against resistant strains provides broad spectrum treatment and magnitude of effectivity, which is many folds higher than antibiotics. Many commercially available endolysins such as Staphefekt SA.100, Exebacase (CF-301), and N-Rephasin®SAL200 are used in biofilm penetration and treating plant diseases. The role of CMP1 phage endolysin in transgenic tomato plants in preventing Clavibacter michiganensis infection and the effectiveness of phage in protecting Atlantic salmon from vibriosis have been reported. Furthermore, phage-derived endolysin therapy, such as TSPphg phage exogenous treatment, can aid in disrupting cell walls, leading to bacterial cell lysis. As animals in aquaculture and slaughterhouses are highly susceptible to bacterial infections, effective phage therapy instead of antibiotics can help treat poultry animals, preserve them, and facilitate disease-free trade. Using bioengineered phages and phage cocktails enhances the effectiveness by providing a broad spectrum of phages and target specificity. Research is currently being conducted on clinical trials to confirm the efficacy of engineered phages and phage cocktails in humans. Although obtaining commercial approval may be time-consuming, it will be beneficial in the postantibiotic era. This review provides an overview of the significance of phage therapy as a potential alternative to antibiotics in combating resistant bacterial strains and its application to various fields and emphasizes the importance of safeguarding and ensuring treatment efficacy.


Assuntos
Antibacterianos , Bacteriófagos , Endopeptidases , Terapia por Fagos , Antibacterianos/farmacologia , Humanos , Animais , Infecções Bacterianas/terapia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/virologia
3.
J Sci Food Agric ; 104(10): 5907-5920, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416598

RESUMO

BACKGROUND: Mangifera indica L. (mango), a medicinal plant rich in biologically active compounds, has potential to be used in disease-preventing and health-promoting products. The present investigation reveals and uncovers bioactive metabolites with remarkable therapeutic efficiency from mango (family: Anacardiaceae) seeds. RESULTS: Biological activity was determined by antimicrobial, antioxidant and anticancer assays, and metabolite profiling was performed on gas chromatography coupled to quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) platforms. Validation of active metabolites was carried out by in silico molecular docking (Molinspiration Cheminformatics Server and PASS). Extracted and identified metabolites were screened; 54 compounds associated with various groups were selected for the in silico interaction study. CONCLUSIONS: Molecular docking revealed lead molecules with a potential binding energy score, efficacy and stable modulation with a selected protein domain. Investigation, directed by in vitro and in silico analysis, confirms mango seeds as an excellent source of potential metabolites as a therapeutic agent. © 2024 Society of Chemical Industry.


Assuntos
Descoberta de Drogas , Mangifera , Metabolômica , Simulação de Acoplamento Molecular , Extratos Vegetais , Sementes , Mangifera/química , Sementes/química , Sementes/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/metabolismo
4.
World J Microbiol Biotechnol ; 40(2): 77, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253986

RESUMO

The Bacillus genus has emerged as an important player in modern agriculture, revolutionizing plant growth promotion through recent advances. This review provides a comprehensive overview of the critical role Bacillus species play in boosting plant growth and agricultural sustainability. Bacillus genus bacteria benefit plants in a variety of ways, according to new research. Nitrogen fixation, phosphate solubilization, siderophore production, and the production of growth hormones are examples of these. Bacillus species are also well-known for their ability to act as biocontrol agents, reducing phytopathogens and protecting plants from disease. Molecular biology advances have increased our understanding of the complex interplay between Bacillus species and plants, shedding light on the genetic and metabolic underpinnings of these interactions. Furthermore, novel biotechnology techniques have enabled the development of Bacillus-based biofertilizers and biopesticides, providing sustainable alternatives to conventional chemical inputs. Apart from this, the combination of biochar and Bacillus species in current biotechnology is critical for improving soil fertility and encouraging sustainable agriculture through enhanced nutrient retention and plant growth. This review also emphasizes the Bacillus genus bacteria's ability to alleviate environmental abiotic stresses such as drought and salinity, hence contributing to climate-resilient agriculture. Moreover, the authors discuss the challenges and prospects associated with the practical application of Bacillus-based solutions in the field. Finally, recent advances in Bacillus-mediated plant growth promotion highlight their critical significance in sustainable agriculture. Understanding these improvements is critical for realizing the full potential of Bacillus genus microorganisms to address current global food production concerns.


Assuntos
Bacillus , Resiliência Psicológica , Agricultura , Agentes de Controle Biológico , Biotecnologia
5.
Phys Chem Chem Phys ; 25(1): 304-313, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477682

RESUMO

Time resolved fluorescence spectroscopic investigation of four Schiff base anions has established that their excited state dynamics is governed by several solvent properties: polarity, viscosity and hydrogen bond donating ability. With viscous protic solvents like glycerol, fluorescence lifetimes of anions have been found to be markedly longer than those in ethanol, implying that conformational relaxation of molecules plays a key role in their nonradiative relaxation. Surprisingly, the lifetimes in less viscous aprotic solvents, like acetonitrile, are found to be even longer. The only plausible rationalization of this observation is in the light of hydrogen bond-assisted nonradiative phenomena that are operative in protic solvents. This contention draws support from a time evolution of the emission in the red end of the spectrum in low to moderately hydrogen bond donating protic solvents, with regard to an absence of such a rise time in aprotic solvents and strongly hydrogen bond donating solvents, viz., 2,2,2-trifluoroethanol. Rudimentary quantum chemical calculations provide a preliminary idea about the nature of excited state hydrogen bond redistribution involved in the process.

6.
Acc Chem Res ; 53(8): 1580-1592, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32677432

RESUMO

Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.


Assuntos
Selênio/química , Enxofre/química , Cisteína/química , Ligação de Hidrogênio , Proteínas Ferro-Enxofre/química , Estruturas Metalorgânicas/química , Teoria Quântica , Rubredoxinas/química , Eletricidade Estática
7.
Phys Chem Chem Phys ; 23(27): 14755-14763, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34195713

RESUMO

While electrostatic interactions are exceedingly accountable for biological functions, no simple method exists to directly estimate or measure the electrostatic field in protein active sites. The electrostatic field inside the protein is generally inferred from the shift in the vibrational stretching frequencies of nitrile and thionitrile probes at the active sites through several painstaking and time-consuming experiments like vibrational Stark effect spectroscopy (VSS). Here we present a simple, fast, and reliable methodology, which can efficiently predict the vibrational Stark tuning rates (VSRs) of a large variety of probes within 10% error of the reported experimental data. Our methodology is based on geometry optimization and frequency calculations in the presence of an external electric field to predict the accurate VSR of newly designed nitrile/thionitrile probes. A priori information of VSRs is useful for difficult experiments such as catalytic/enzymatic study and in structural biology. We also applied our methodology successfully to estimate the electric field inside fullerenes and nano-onions, which is encouraging for researchers to adopt it for further applications in materials science and supramolecular chemistry.


Assuntos
Fulerenos/química , Proteínas/química , Catálise , Domínio Catalítico , Campos Eletromagnéticos , Modelos Moleculares , Nitrilas/química , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Vibração
8.
Phys Chem Chem Phys ; 22(16): 8988-8997, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32293624

RESUMO

In contrast to the conventional and non-conventional non-covalent interactions (NCIs) such as hydrogen bond and carbon bond, a bidirectional NCI without π- and/or lone pair(s) of electrons has never been reckoned until the present report, which confirms that this type of NCI can be possible with the involvement of mostly σ-electrons. This newly discovered NCI can be coined as carbo-hydrogen bond (CH-bond) based on its resemblances with both carbon bond (C-bond) and hydrogen bond (H-bond) or Ci:::H interaction. A detailed crystal structure analysis of 5-cyano-1,3-dehydroadamantane, which contains inverted carbon atoms (Ci) and Ci-Ci σ-bond, gave us the opportunity to unveil the very first existence of the Ci:::H interaction. With the aid of several quantum chemical calculations, we came to the conclusion that molecules carrying Ci-Ci σ-bonds are capable of forming CH-bonds with main group hydrides through the σCi-Ci → σ*X-H (H-bond) and σX-H → σ*Ci-Ci (C-bond) orbital interactions. The interaction energy can be as much as -31.27 kJ mol-1, which is comparable to that of the water dimer and it is also one of the prominent attractive forces that hold the molecules together in the crystal structure, can be responsible for the enzymatic activity of cytochrome P411-E10 and the formation of non-covalent organic framework (NCOF) with trigonal and tetragonal CH-bond connectors.

9.
Phys Chem Chem Phys ; 21(25): 13623-13632, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31187793

RESUMO

The aggregation of phenylacetylene in the gas phase was investigated by selectively recording the IR spectra of clusters consisting of up to six monomer units. Analysis of the IR spectra with the aid of B97-D3/aug-cc-pVDZ level calculations reveals the formation of an anti-parallel π-stacked structure of the dimer and a hitherto unknown assembly of clusters incorporating exclusively aromatic C-Hπ interactions between various units of the trimer and higher clusters. The aggregation behaviour of phenylacetylene in the gas phase is fundamentally different from benzene, phenol and aniline vis-à-vis their crystal structures. The structures of the three known polymorphic crystals can be reconciled by the formation of supramolecular synthons with acetylenic C-Hπ interactions, which is preferred over energetically favored aromatic C-Hπ interactions. Furthermore, the small (phenylacetylene)n [n = 3-6] clusters, the structures incorporating aromatic C-Hπ interactions, can be envisaged as liquid-like aggregates which under varied conditions lead to the formation of multiple polymorphs during in situ cryo-crystallization.

10.
J Phys Chem A ; 123(11): 2227-2236, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30802055

RESUMO

The significance of dispersion contribution in the formation of strong hydrogen bonds (H-bonds) can no more be ignored. It was illustrated that less electronegative and electropositive H-bond acceptors such as S, Se, and Te are also capable of forming strong N-H···Y H-bonds, mostly due to the high polarizabilities of H-bond acceptor atoms. Herein, for the first time, we report the evidence of formation of nonconventional M-H···Y H-bonds between metal hydrides (M-H, M = Mn, Fe, Co) and chalcogen H-bond acceptors (Y = O, S, or Se). The nature and the strength of unusual M-H···Y H-bonds were revealed by several quantum chemical calculations and H-bond descriptors. The structural parameters, electron density topology, donor-acceptor natural bond orbital (NBO) interaction energies, and spectroscopic observables such as M-H stretching frequencies and 1H chemical shifts are well-correlated to manifest the existence and strength of M-H···Y H-bonding. The M-H···Y H-bonds are dispersive in nature, and the computed H-bond energies are found to be in the range from ∼5 to 30 kJ/mol, which can be compared to those of the conventional H-bonds such as O-H···O, N-H···O, and N-H···O═C H-bonds, etc.

11.
Angew Chem Int Ed Engl ; 57(50): 16496-16500, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30347500

RESUMO

Carbon bonds (C-bonds) are the highly directional noncovalent interactions between carbonyl-oxygen acceptors and sp3 -hybridized-carbon σ-hole donors through n→σ* electron delocalization. We have shown the ubiquitous existence of C-bonds in proteins with the help of careful protein structure analysis and quantum calculations, and have precisely determined C-bond energies. The importance of conventional noncovalent interactions such as hydrogen bond (H-bonds) and halogen bond (X-bonds) in the structure and function of biological molecules are well established, while carbon bonds C-bonds have still to be recognized. We have shown that C-bonds are present in proteins, contribute enthalpically to the overall hydrophobic interaction and play a significant role in the photodissociation mechanism of myoglobin and the binding of nucleobases to proteins.


Assuntos
Carbono/química , Proteínas/química , Animais , Cavalos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mioglobina/química , Teoria Quântica , Termodinâmica
12.
Chemphyschem ; 18(24): 3625-3633, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28984024

RESUMO

Several recent publications have illustrated that electrostatic attraction is not solely responsible for strong hydrogen bonds. Even electropositive and less electronegative atoms such as Te and Se are capable of forming strong H-bonds. Herein, we provide evidence for intramolecular homopolar dihydrogen bonds [HOMO-DHBs; X-N(C)-Hδ+ ⋅⋅⋅δ+ H-N(C)-Y] in porphyrins and related compounds for the first time; these bonds are revealed by careful Cambridge Structural Database (CSD) exploration, quantum theory of atoms in molecules, compliance constant calculations, and natural bond orbital and noncovalent interaction (NCI) analysis. A search of the CSD showed that the inner-core hydrogen atom distances were less than 2.5 Š(sum of the van der Waals radii of two hydrogen atoms is 2.4 Å) in porphyrinoids, i.e. about 75 % of the cases. This suggested an attractive interaction between hydrogen atoms carrying a positive charge, which was further supported by quantum-chemical calculations. The HOMO-DHB energy in some cases was found to be as much as around 20 kJ mol-1 , which is comparable to that of any conventional H-bond energy such as for the NH3 dimer. The interplay between hyperconjugative attraction and steric constraint favorably decided the strength of the HOMO-DHBs. We expect that HOMO-DHBs could be revealed in many more systems, such as corroles, phlorins, crown ethers, and constrained systems having hydrogen atoms in close contact, and could be an important noncovalent interaction to consider in supramolecular chemistry.

13.
Planta ; 240(4): 855-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092118

RESUMO

MAIN CONCLUSION: We have designed two near- constitutive and stress-inducible promoters (CmYLCV9.11 and CmYLCV4); those are highly efficient in both dicot and monocot plants and have prospective to substitute the CaMV 35S promoter. We performed structural and functional studies of the full-length transcript promoter from Cestrum yellow leaf curling virus (CmYLCV) employing promoter/leader deletion and activating cis-sequence analysis. We designed a 465-bp long CmYLCV9.11 promoter fragment (-329 to +137 from transcription start site) that showed enhanced promoter activity and was highly responsive to both biotic and abiotic stresses. The CmYLCV9.11 promoter was about 28-fold stronger than the CaMV35S promoter in transient and stable transgenic assays using ß-glucuronidase (GUS) reporter gene. The CmYLCV9.11 promoter also demonstrated stronger activity than the previously reported CmYLCV promoter fragments, CmpC (-341 to +5) and CmpS (-349 to +59) in transient systems like maize protoplasts and onion epidermal cells as well as transgenic systems. A good correlation between CmYLCV9.11 promoter-driven GUS-accumulation/enzymatic activities with corresponding uidA-mRNA level in transgenic tobacco plants was shown. Histochemical (X-Gluc) staining of transgenic seedlings, root and floral parts expressing the GUS under the control of CmYLCV9.11, CaMV35S, CmpC and CmpS promoters also support the above findings. The CmYLCV9.11 promoter is a constitutive promoter and the expression level in tissues of transgenic tobacco plants was in the following order: root > leaf > stem. The tobacco transcription factor TGA1a was found to bind strongly to the CmYLCV9.11 promoter region, as shown by Gel-shift assay and South-Western blot analysis. In addition, the CmYLCV9.11 promoter was regulated by a number of abiotic and biotic stresses as studied in transgenic Arabidopsis and tobacco plants. The newly derived CmYLCV9.11 promoter is an efficient tool for biotechnological applications.


Assuntos
Arabidopsis/genética , Caulimovirus/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas/genética , Arabidopsis/fisiologia , Flores/genética , Flores/fisiologia , Expressão Gênica , Genes Reporter , Cebolas/genética , Cebolas/fisiologia , Doenças das Plantas/imunologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Protoplastos , Proteínas Recombinantes , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico , Nicotiana/genética , Nicotiana/fisiologia
14.
Acta Biol Hung ; 65(2): 189-204, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24873912

RESUMO

Studies in Arabidopsis thaliana and Nicotiana tabacum L. variety Samsun NN demonstrated that expression of the CESA3 cellulose synthase gene that contains a point mutation, named ixr1-2, results in greater conversion of plant-derived cellulose to fermentable sugars. The present study was designed to examine the improved enzymatic saccharification efficiency of lignocellulosic biomass of tobacco plants expressing AtCESA3ixr1-2. Three-month-old AtCESA3ixr1-2 transgenic and wild-type tobacco plants (Nicotiana tabacum L. variety Samsun NN) were grown in the presence and absence of isoxaben. Biomass obtained from leaf, stem, and root tissues were analyzed for enzymatic saccharification rates. During enzymatic saccharification, 45% and 25% more sugar was released from transgenic leaf and stem samples, respectively, when compared to the wild-type samples. This gain in saccharification efficiency was achieved without chemical or heat pretreatment. Additionally, leaf and stem biomass from transgenic AtCESA3ixr1-2 requires a reduced amount of enzyme for saccharification compared to biomass from wild-type plants. From a practical standpoint, a similar strategy could be employed to introduce the mutated CESA into energy crops like poplar and switchgrass to improve the efficiency of biomass conversion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Celulose/metabolismo , Fermentação , Glucosiltransferases/metabolismo , Nicotiana/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Proteínas de Arabidopsis/genética , Benzamidas/farmacologia , Biomassa , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Herbicidas/farmacologia , Hidrólise , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Mutação Puntual , Fatores de Tempo , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
15.
PeerJ ; 12: e16793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282857

RESUMO

Background: Water deprivation-induced hypoxia stress (WDIHS) has been extensively investigated in numerous fish species due to their adaptation with accessory respiratory organs to respire air but this has not been studied in Indian stinging fish Heteropneustes fossilis. Data regarding WDIHS-induced metabolism in accessory respiratory organ (ARO) and gills and its relationship with oxidative stress (OS) in respiratory organs of air-breathing fish H. fossilis, are limited. So, this study aimed to investigate the effects of WDIHS (0, 3, 6, 12, and 18 h) on hydrogen peroxide (H2O2) as reactive oxygen species (ROS), OS, redox regulatory enzymes, and electron transport enzymes (ETC) in ARO and gills of H. fossilis. Methods: Fish were exposed to air for different hours (up to 18 h) against an appropriate control, and ARO and gills were sampled. The levels of oxygen saturation in the body of the fish were assessed at various intervals during exposure to air. Protein carbonylation (PC) and thiobarbituric acid reactive substances (TBARS) were used as OS markers, H2O2 as ROS marker, and various enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), along with the assessment of complex enzymes (I, II, III, and V) as well as the levels of ascorbic acid (AA) and the reduced glutathione (GSH) were quantified in both the tissues. Results: Discriminant function analyses indicate a clear separation of the variables as a function of the studied parameters. The gills exhibited higher levels of GSH and H2O2 compared to ARO, while ARO showed elevated levels of PC, TBARS, AA, SOD, CAT, and GPx activities compared to the gills. The activities of GR and ETC enzymes exhibited similar levels in both the respiratory organs, namely the gills, and ARO. These organs experienced OS due to increased H2O2, TBARS, and PC levels, as observed during WDIHS. Under WDIHS conditions, the activity/level of CAT, GPx, GR, and GSH decreased in ARO, while SOD activity, along with GR, GSH, and AA levels decreased in gills. However, the activity/level of SOD and AA in ARO and CAT in gills was elevated under WDIHS. Complex II exhibited a positive correlation with WDIHS, while the other ETC enzymes (complex I, III, and V) activities had negative correlations with the WDIHS. Discussion: The finding suggests that ARO is more susceptible to OS than gills under WDIHS. Despite both organs employ distinct redox regulatory systems to counteract this stress, their effectiveness is hampered by the inadequacy of small redox regulatory molecules and the compromised activity of the ETC, impeding their ability to effectively alleviate the stress induced by the water-deprivation condition.


Assuntos
Peixes-Gato , Privação de Água , Animais , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Ácido Ascórbico/metabolismo , Desidratação , Glutationa Peroxidase/metabolismo , Hipóxia , Peixes-Gato/metabolismo
16.
Water Environ Res ; 96(5): e11029, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708452

RESUMO

Microplastics (MPs) pollution has wreaked havoc on biodiversity and food safety globally. The false ingestion of MPs causes harmful effects on organisms, resulting in a decline in biodiversity. The present review comprehended the current knowledge of MP contamination in Crustacea and Mollusca from 75 peer-reviewed articles published in Asia between 2015 and 2023. A total of 79 species (27 Crustacea and 52 Mollusca) have been recorded to be contaminated with MPs. Out of the total 27 species of Crustacea, Metopograpsus quadridentatus (327.56 MPs/individual) and Balanus albicostatus (0.42 MPs/individual) showed the highest and lowest contamination, respectively. Out of the total 52 species of Mollusca, Dolabella auricularia (2325 MPs/individual) and Crassostrea gigas and Mytilus edulis (0.2 MPs/individual) showed the highest and lowest contamination, respectively. In terms of country-wise MP contamination, China has the highest number of contaminated species in both phylums among Asia. Findings of pollution indices revealed a very high risk of MP contamination in all the countries. Fiber was reported predominantly in both groups. Blue and black-colored MPs having <500 µm and <500 µm-1 mm size were found dominantly in Crustacea and Mollusca, respectively. Polypropylene was recorded as the dominant plastic polymer in both Crustacea and Mollusca. In essence, this review has provided a comprehensive insight into MP concentration in Crustacea and Mollusca of Asia, highlighting variations among species and geographic locations. This understanding is crucial for tackling urgent environmental challenges, safeguarding human health, and promoting global sustainability initiatives amid the escalating issue of plastic pollution. PRACTITIONER POINTS: Microplastic pollution has created havoc on biodiversity and food safety. A total of 27 and 52 species of crustaceans and Mollusca have been recorded to be contaminated with MPs. Metopograpsus quadridentate and Dolabella auricularia have shown higher MPs contamination. Polypropylene was recorded as the dominant plastic polymer in both crustacean and Mollusca. Findings of pollution indices revealed a very high risk of MP contamination in all the countries.


Assuntos
Crustáceos , Microplásticos , Moluscos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Medição de Risco , Ásia , Microplásticos/análise , Monitoramento Ambiental
17.
Front Cell Dev Biol ; 12: 1379714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872928

RESUMO

Chronic inflammatory enteropathies (CIEs) are an important group of diseases in dogs and involve complex pathogenetic aspects. Endoscopy and histopathology are vital for documenting the disease but are less useful for subclassifying CIEs and predicting the response to treatment. However, healing of the mucosal disease process (deep remission) and ultrastructural evaluation of the mucosa have received little attention in canine CIE. Given that canine CIE shares many similarities with inflammatory bowel diseases (IBDs) in human patients-and presents a good spontaneous disease model for human IBD-this perspective article evaluates the literature on ultrastructural lesions in canine CIE and human IBD and offers future directions for the study of ultrastructural mucosal lesions in canine CIE. Such lesions might have a higher sensitivity of detection than structural changes revealed upon light microscopy and may even precede or remain after the resolution of the clinical signs and histologic lesions.

18.
Front Cell Infect Microbiol ; 14: 1348713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510969

RESUMO

Sepsis is a potentially fatal condition characterized by organ dysfunction caused by an imbalanced immune response to infection. Although an increased inflammatory response significantly contributes to the pathogenesis of sepsis, several molecular mechanisms underlying the progression of sepsis are associated with increased cellular reactive oxygen species (ROS) generation and exhausted antioxidant pathways. This review article provides a comprehensive overview of the involvement of ROS in the pathophysiology of sepsis and the potential application of antioxidants with antimicrobial properties as an adjunct to primary therapies (fluid and antibiotic therapies) against sepsis. This article delves into the advantages and disadvantages associated with the utilization of antioxidants in the therapeutic approach to sepsis, which has been explored in a variety of animal models and clinical trials. While the application of antioxidants has been suggested as a potential therapy to suppress the immune response in cases where an intensified inflammatory reaction occurs, the use of multiple antioxidant agents can be beneficial as they can act additively or synergistically on different pathways, thereby enhancing the antioxidant defense. Furthermore, the utilization of immunoadjuvant therapy, specifically in septic patients displaying immunosuppressive tendencies, represents a promising advancement in sepsis therapy.


Assuntos
Antioxidantes , Sepse , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Sepse/tratamento farmacológico , Sepse/metabolismo , Mitocôndrias/metabolismo
19.
Environ Toxicol Chem ; 43(4): 671-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353354

RESUMO

Microplastics (MPs) have attracted global concern because of their harmful effects on marine biota; their toxic properties can negatively impact aquatic ecosystems. Fish is an essential source of protein for humans, playing a crucial role in daily food intake. Until recently, MPs were addressed primarily as environmental pollutants, but they are now increasingly recognized as contaminants in the food supply. The present review has comprehended the current knowledge of MP contamination in freshwater and marine fishes of Asia, including 112 peer-reviewed sources from 2016 to 2023. The review recorded 422 Asian fishes (345 marine and 77 freshwater) to be contaminated with MPs. Clarias gariepinus and Selaroides leptolepi have shown maximum MP contamination in the freshwater and marine environments of Asia, respectively. Omnivorous and carnivorous fishes exhibited higher susceptibility to ingesting MPs. Benthopelagic, demersal, and reef-associated habitats were identified as more prone to MP accumulation. In both freshwater and marine environments, China has the highest number of contaminated species among all the countries. Pollution indices indicated high MP contamination in both freshwater and marine environments. A prevalence of fibers was recorded in all fishes. Black- and blue-colored MPs of <500 µm-1 mm size were found dominantly. Polyethylene terephthalate and polyethylene were recorded as the prevalent plastic polymers in freshwater and marine fish, respectively. Overall, the review served as a comprehensive understanding of MP concentrations and variations between species, between feeding habits, and between geographic locations, which can be pivotal for addressing pressing environmental challenges, protecting human health, and fostering global sustainability efforts in the face of escalating plastic pollution. Environ Toxicol Chem 2024;43:671-685. © 2024 SETAC.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Ecossistema , Monitoramento Ambiental , Ásia , Peixes/metabolismo , Poluentes Químicos da Água/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-38856850

RESUMO

This research paper aims to explore the effect of graphite, wollastonite, and titanium dioxide as reinforcing fillers on starch-based biodegradable plastic (SBP) films. GF-SBP (graphite filler containing SBP), WF-SBP (wollastonite containing SBP), and TF-SBP (titanium dioxide containing SBP) films were developed and analyzed for various properties such as thickness, density, tensile strength, elongation break, morphology, thermal stability, solubility, moisture content, moisture absorbance, biodegradability, and antibacterial activity. The results reveal that WF-SBP films had the highest tensile strength of 5.43 MPa and greatest elongation break value of 22% as compared to other films. Thermogravimetric analysis showed that SBP films with and without filler degraded slowly between 150 and 600°C. The highest thermal stability was recorded for TF-SBP films which showed stability (11% mass loss) up to 150°C. The biodegradability test conducted using soil burial method suggested that TF-SBP film degraded within 90 days, GF-SBP films degraded completely in 120 days, and WF-SBP films took more than 120 days to degrade. The synthesized SBP films were analyzed for their antibacterial potential against gram-positive and gram-negative bacteria, and results showed that WF-SBP film exhibited the best antibacterial activity by producing a large zone of inhibition against Escherichia coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA