Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15994, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749139

RESUMO

Chromium nitride (CrN) spurred enormous interest due to its coupled magnetostructural and unique metal-insulator transition. The underneath electronic structure of CrN remains elusive. Herein, the electronic structure of epitaxial CrN thin film has been explored by employing resonant photoemission spectroscopy (RPES) and X-ray absorption near edge spectroscopy study in combination with the first-principles calculations. The RPES study indicates the presence of a charge-transfer screened 3[Formula: see text] ([Formula: see text]: hole in the N-2[Formula: see text]) and 3[Formula: see text] final-states in the valence band regime. The combined experimental electronic structure along with the orbital resolved electronic density of states from the first-principles calculations reveals the presence of Cr(3[Formula: see text])-N(2[Formula: see text]) hybridized (3[Formula: see text]) states between lower Hubbard (3[Formula: see text]) and upper Hubbard (3[Formula: see text]) bands with onsite Coulomb repulsion energy (U) and charge-transfer energy ([Formula: see text]) estimated as [Formula: see text] 4.5 and 3.6 eV, respectively. It verifies the participation of ligand (N-2[Formula: see text]) states in low energy charge fluctuations and provides concrete evidence for the charge-transfer ([Formula: see text]U) insulating nature of CrN thin film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA