Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2309457121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289949

RESUMO

Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Animais , Hidrogéis/química , Biopolímeros , Mamíferos
2.
Nat Chem Biol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503834

RESUMO

Segments of proteins with high ß-strand propensity can self-associate to form amyloid fibrils implicated in many diseases. We describe a general approach to bind such segments in ß-strand and ß-hairpin conformations using de novo designed scaffolds that contain deep peptide-binding clefts. The designs bind their cognate peptides in vitro with nanomolar affinities. The crystal structure of a designed protein-peptide complex is close to the design model, and NMR characterization reveals how the peptide-binding cleft is protected in the apo state. We use the approach to design binders to the amyloid-forming proteins transthyretin, tau, serum amyloid A1 and amyloid ß1-42 (Aß42). The Aß binders block the assembly of Aß fibrils as effectively as the most potent of the clinically tested antibodies to date and protect cells from toxic Aß42 species.

3.
Proc Natl Acad Sci U S A ; 120(18): e2303149120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094170

RESUMO

With the recent success in calculating protein structures from amino acid sequences using artificial intelligence-based algorithms, an important next step is to decipher how dynamics is encoded by the primary protein sequence so as to better predict function. Such dynamics information is critical for protein design, where strategies could then focus not only on sequences that fold into particular structures that perform a given task, but would also include low-lying excited protein states that could influence the function of the designed protein. Herein, we illustrate the importance of dynamics in modulating the function of C34, a designed α/ß protein that captures ß-strands of target ligands and is a member of a family of proteins designed to sequester ß-strands and ß hairpins of aggregation-prone molecules that lead to a variety of pathologies. Using a strategy to "see" regions of apo C34 that are invisible to NMR spectroscopy as a result of pervasive conformational exchange, as well as a mutagenesis approach whereby C34 molecules are stabilized into a single conformer, we determine the structures of the predominant conformations that are sampled by C34 and show that these attenuate the affinity for cognate peptide. Subsequently, the observed motion is exploited to develop an allosterically regulated peptide binder whose binding affinity can be controlled through the addition of a second molecule. Our study emphasizes the unique role that NMR can play in directing the design process and in the construction of new molecules with more complex functionality.


Assuntos
Inteligência Artificial , Proteínas , Conformação Proteica , Sequência de Aminoácidos , Peptídeos , Ligantes
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074752

RESUMO

Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.


Assuntos
Nanoestruturas/química , Engenharia de Proteínas , Proteínas/química , Repetição de Anquirina , Nanoestruturas/ultraestrutura , Conformação Proteica em alfa-Hélice , Proteínas/genética , Proteínas/ultraestrutura
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879614

RESUMO

The de novo design of polar protein-protein interactions is challenging because of the thermodynamic cost of stripping water away from the polar groups. Here, we describe a general approach for designing proteins which complement exposed polar backbone groups at the edge of beta sheets with geometrically matched beta strands. We used this approach to computationally design small proteins that bind to an exposed beta sheet on the human transferrin receptor (hTfR), which shuttles interacting proteins across the blood-brain barrier (BBB), opening up avenues for drug delivery into the brain. We describe a design which binds hTfR with a 20 nM Kd, is hyperstable, and crosses an in vitro microfluidic organ-on-a-chip model of the human BBB. Our design approach provides a general strategy for creating binders to protein targets with exposed surface beta edge strands.


Assuntos
Engenharia de Proteínas/métodos , Receptores da Transferrina/metabolismo , Receptores da Transferrina/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Proteínas/metabolismo , Transferrina/metabolismo
6.
Mol Cell ; 57(5): 887-900, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25702870

RESUMO

Deubiquitinating enzymes (DUBs) control vital processes in eukaryotes by hydrolyzing ubiquitin adducts. Their activities are tightly regulated, but the mechanisms remain elusive. In particular, the DUB UCH-L5 can be either activated or inhibited by conserved regulatory proteins RPN13 and INO80G, respectively. Here we show how the DEUBAD domain in RPN13 activates UCH-L5 by positioning its C-terminal ULD domain and crossover loop to promote substrate binding and catalysis. The related DEUBAD domain in INO80G inhibits UCH-L5 by exploiting similar structural elements in UCH-L5 to promote a radically different conformation, and employs molecular mimicry to block ubiquitin docking. In this process, large conformational changes create small but highly specific interfaces that mediate activity modulation of UCH-L5 by altering the affinity for substrates. Our results establish how related domains can exploit enzyme conformational plasticity to allosterically regulate DUB activity. These allosteric sites may present novel insights for pharmaceutical intervention in DUB activity.


Assuntos
Proteínas de Ligação a DNA/química , Glicoproteínas de Membrana/química , Estrutura Terciária de Proteína , Ubiquitina Tiolesterase/química , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
7.
Trends Biochem Sci ; 40(8): 456-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26073511

RESUMO

Proteolytic enzymes, such as (iso-)peptidases, are potentially hazardous for cells. To neutralize their potential danger, tight control of their activities has evolved. Deubiquitylating enzymes (DUBs) are isopeptidases involved in eukaryotic ubiquitylation. They reverse ubiquitin signals by hydrolyzing ubiquitin adducts, giving them control over all aspects of ubiquitin biology. The importance of DUB function is underscored by their frequent deregulation in human disease, making these enzymes potential drug targets. Here, we review the different layers of DUB enzyme regulation. We discuss how post-translational modification (PTM), regulatory domains within DUBs, and incorporation of DUBs into macromolecular complexes contribute to their activity. We conclude that most DUBs are likely to use a combination of these basic regulatory mechanisms.


Assuntos
Carbono-Nitrogênio Liases/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Ubiquitinação
8.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398067

RESUMO

Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment and molecular dynamics (MD) simulation, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in non-Newtonian biomaterials exhibiting fluid-like properties under rest and low shear, but shear-stiffening solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly, in correlation with matching formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.

9.
Science ; 375(6578): eabj7662, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050655

RESUMO

Asymmetric multiprotein complexes that undergo subunit exchange play central roles in biology but present a challenge for design because the components must not only contain interfaces that enable reversible association but also be stable and well behaved in isolation. We use implicit negative design to generate ß sheet-mediated heterodimers that can be assembled into a wide variety of complexes. The designs are stable, folded, and soluble in isolation and rapidly assemble upon mixing, and crystal structures are close to the computational models. We construct linearly arranged hetero-oligomers with up to six different components, branched hetero-oligomers, closed C4-symmetric two-component rings, and hetero-oligomers assembled on a cyclic homo-oligomeric central hub and demonstrate that such complexes can readily reconfigure through subunit exchange. Our approach provides a general route to designing asymmetric reconfigurable protein systems.


Assuntos
Complexos Multiproteicos/química , Engenharia de Proteínas , Proteínas/química , Simulação por Computador , Cristalografia por Raios X , Escherichia coli/genética , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica , Conformação Proteica em Folha beta , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas
10.
J Struct Biol ; 175(2): 113-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21453775

RESUMO

High-throughput methods to produce a large number of soluble recombinant protein variants are particularly important in the process of determining the three-dimensional structure of proteins and their complexes. Here, we describe a collection of protein expression vectors for ligation-independent cloning, which allow co-expression strategies by implementing different affinity tags and antibiotic resistances. Since the same PCR product can be inserted in all but one of the vectors, this allows efficiency in versatility while screening for optimal expression strategies. We first demonstrate the use of these vectors for protein expression in Escherichia coli, on a set of proteins belonging to the ubiquitin specific protease (USP) Family. We have selected 35 USPs, created 145 different expression constructs into the pETNKI-His-3C-LIC-kan vector, and obtained 38 soluble recombinant proteins for 21 different USPs. Finally, we exemplify the use of our vectors for bacterial co-expression and for expression in insect cells, with USP4 and USP7 respectively. We conclude that our ligation-independent cloning strategy allows for high-throughput screening for the expression of soluble proteins in a variety of vectors in E. coli and in insect cells. In addition, the same vectors can be used for co-expression studies, at least for simple binary complexes. Application in the family of ubiquitin specific proteases led to a number of soluble USPs that are used for functional and crystallization studies.


Assuntos
Clonagem Molecular/métodos , Endopeptidases/genética , Vetores Genéticos , Proteínas Recombinantes/genética , Animais , Automação Laboratorial , Baculoviridae , Sequência de Bases , Linhagem Celular , Endopeptidases/metabolismo , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Proteases Específicas de Ubiquitina
11.
Nat Commun ; 7: 10292, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739236

RESUMO

The deubiquitinating enzyme BAP1 is an important tumor suppressor that has drawn attention in the clinic since its loss leads to a variety of cancers. BAP1 is activated by ASXL1 to deubiquitinate mono-ubiquitinated H2A at K119 in Polycomb gene repression, but the mechanism of this reaction remains poorly defined. Here we show that the BAP1 C-terminal extension is important for H2A deubiquitination by auto-recruiting BAP1 to nucleosomes in a process that does not require the nucleosome acidic patch. This initial encounter-like complex is unproductive and needs to be activated by the DEUBAD domains of ASXL1, ASXL2 or ASXL3 to increase BAP1's affinity for ubiquitin on H2A, to drive the deubiquitination reaction. The reaction is specific for Polycomb modifications of H2A as the complex cannot deubiquitinate the DNA damage-dependent ubiquitination at H2A K13/15. Our results contribute to the molecular understanding of this important tumor suppressor.


Assuntos
Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Clonagem Molecular , Escherichia coli , Regulação da Expressão Gênica/fisiologia , Histonas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
12.
Nat Commun ; 5: 3291, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24518117

RESUMO

During DNA damage response, the RING E3 ligase RNF168 ubiquitinates nucleosomal H2A at K13-15. Here we show that the ubiquitination reaction is regulated by its substrate. We define a region on the RING domain important for target recognition and identify the H2A/H2B dimer as the minimal substrate to confer lysine specificity to the RNF168 reaction. Importantly, we find an active role for the substrate in the reaction. H2A/H2B dimers and nucleosomes enhance the E3-mediated discharge of ubiquitin from the E2 and redirect the reaction towards the relevant target, in a process that depends on an intact acidic patch. This active contribution of a region distal from the target lysine provides regulation of the specific K13-15 ubiquitination reaction during the complex signalling process at DNA damage sites.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células HEK293 , Humanos , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA