Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Phys Chem Chem Phys ; 25(43): 29816-29830, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37886857

RESUMO

Copolymer-surfactant assemblies are frequently utilized across various fields, from medicine to nanotechnology. Understanding the organization of the mixed assemblies in a saline environment will further expand their application horizons, especially under physiological conditions. Excited-state proton transfer (ESPT) can provide insight into the hydration nature and organization of the non-toxic assembly of a triblock copolymer F127 (poly-(ethylene oxide)101 (PEO101)-poly(propylene oxide)56 (PPO56)-PEO101)) and a zwitterionic sulfobetaine surfactant N-dodecyl-N,N-dimethyl-3-ammoniopropane sulfonate (SB12). Here, we present a comprehensive investigation of the compactness and hydration nature of the F127-SB12 mixed assemblies at different salt concentrations using the ESPT of 8-hydroxy pyrene-1,3,6-trisulfonate (HPTS). In the absence of salts, gradual SB12 addition to a premicellar (0.4 mM) or a post-micellar (4 mM) F127 solution leads to an anomalous modulation of the protonated and deprotonated emission bands. The emission intensity ratio (protonated/deprotonated) first increases to a maximum at a particular SB12 concentration (6 mM and 35 mM for the premicellar and post-micellar F127 assemblies, respectively), and then the ratio decreases with a further increase in the surfactant concentration. Since the intensity ratio is an indicator of the retardation of the ESPT process, the mixed micellar configuration displaying a maximum intensity ratio represents the most compact and least hydrated state. Salt addition to this configuration lowers the intensity ratio, signifying an enhanced ESPT process. Dynamic light scattering (DLS) results indicate that the size of the mixed assembly remains almost unaltered with the addition of salts. Thus, salinity enhances the ESPT process inside the F127-SB12 mixed assemblies without significantly altering the hydrodynamic radius.

2.
Phys Chem Chem Phys ; 25(4): 2963-2977, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36606483

RESUMO

Excited-state proton transfer (ESPT) is a sensitive tool for the delicate monitoring of structural reorganization, hydration level, and confinement within surfactant and polymer assemblies. Here, we investigate the interaction of a cationic polyelectrolyte, poly(diallyl dimethylammonium chloride) (PDADMAC), with micelles of differently charged surfactants using 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) as an ESPT probe. We used three surfactants: anionic sodium dodecyl sulfate (SDS), cationic dodecyl trimethylammonium bromide (DTAB), and zwitterionic N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB12), possessing the same alkyl (dodecyl) chain but varying headgroup charges. The fluorescence of HPTS residing initially within the micellar medium modulates differently in the presence of PDADMAC. For the anionic SDS and cationic DTAB micelles, the emission spectrum of HPTS does not alter significantly; however, for SB12 micelles, the emission spectrum undergoes a strong modulation upon adding the polyelectrolyte. The emission intensities quench strongly at a low concentration of PDADMAC but recover at a higher concentration. The emission intensity ratio of the two emission bands also changes significantly, implying strong modulation of the ESPT process with varying PDADMAC concentrations. The time-resolved area normalized emission spectra (TRANES) disclose single isoemissive points in the SB12 micelle at low and high concentrations of PDADMAC but two different isoemissive points (one characteristic of the SB12 micelle at 500 nm and another characteristic of the PDADMAC interface at 480 nm) in the mixed assembly at an intermediate concentration. Detailed analysis suggests that the polyelectrolyte can enforce the transfer of the anionic probe HPTS from the zwitterionic micelle to the PDADMAC assembly above a specific PDADMAC concentration. The transfer of the molecular probe between two assemblies resembles a drug sequestration event, and the study reveals necessary emission signatures.

3.
J Org Chem ; 84(17): 10658-10668, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31389698

RESUMO

Two regioisomeric pairs of heptahelical mono- and biscoumarins that are differentiated by "inward" and "outward" disposition of the pyran-2-one moiety have been synthesized and investigated to understand the influence of helicity on excited-state and chiroptical properties. A slight variation in the helicities is found to manifest in contrasting excited-state properties of coumarin-annelated heptahelicenes; in addition to the intramolecular charge transfer, structural relaxation in the excited state is shown from theoretical calculations to cause decrease in the fluorescence quantum yield for a system with higher helicity. The optically pure enantiomers of heptahelical coumarins exhibit helicity-dependent chiroptical properties, namely, specific rotations, molar ellipticities, Cotton effects, and anisotropic dissymmetry factors. Theoretical calculations point to factors that are not readily explicable.

4.
J Phys Chem A ; 123(38): 8122-8129, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31483654

RESUMO

It is often difficult to assign the nature of an excited-state process unambiguously based on a limited number of experimental evidence. The methylbipyridine/phenol complex is a classic example, where experimental observations support a proton-coupled electron transfer (PCET) or a photo-induced electron transfer (PET) process. Here, we implemented time-dependent density functional theory calculation to elucidate the nature of the process. We found that PCET is possible only when mediated by a H-bond between methylbipyridine and phenol. However, a conventional PET can occur through π-π stacking interaction between the donor and the acceptor. Thus, the photophysical process in the complex is indeed governed by competition of H-bonding versus π-π interaction. Our calculations including the solvent model based on density (SMD) suggest that π-π stacking is more favorable than H-bonding, and hence, conventional PET is a more favorable excited-state process for the methylbipyridine/methoxyphenol complex than PCET.

5.
Chemphyschem ; 19(17): 2153-2158, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29683246

RESUMO

A new phase transfer strategy to convert aqueous phase protein-protected nanomaterials into fluorescent nanoclusters in the reverse micellar environment is introduced using bovine serum albumin (BSA)-protected silver nanoclusters (AgNCs) and nanoparticles (AgNPs) as an example. The basic pH employed in the fabrication of protein-protected nanoclusters induces the the protein capping to be negatively charged and facilitates the transfer process of the nanomaterials from aqueous phase to a cationic gemini surfactant (16-2-16)/hexane/hexanol/water reverse micelle (RM) phase. The original fluorescence characteristics of the seed nanocluster is retained after the transfer process. Strikingly, when both the nanomaterials (AgNCs and AgNPs) coexist in the aqueous feed solution, they are exclusively converted into uniform nanoclusters in the RM extract with enhanced fluorescence intensity.


Assuntos
Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Micelas , Soroalbumina Bovina/química , Prata/química , Animais , Bovinos , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Solventes/química , Espectrometria de Fluorescência , Tensoativos/química , Água/química
6.
J Phys Chem A ; 122(9): 2394-2400, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29455531

RESUMO

The H-bonded coumarin 102 (C102)-phenol complex has been a model system usually used to understand the influence of H-bonding on photophysical processes. Zhao and Han first showed that significant H-bond strengthening occurs in the excited state and proposed the possibility of fluorescence quenching in the complex via internal conversion from a locally excited (LE) state to a low-lying charge transfer (CT) state. Later, we experimentally confirmed fluorescence quenching of C102-phenol complex in a nonpolar solvent (cyclohexane). However, we also found that the existence of the low-lying CT state is ambiguous. Here, we proposed an alternative mechanism for the fluorescence quenching in the H-bonded complex. For this, we evaluate the excited state potential energy surface considering complete H atom-transfer from phenol to C102 along the H-bonding coordinate. Surprisingly, we observed two distinct minima separated by a low-energy barrier. One minimum corresponds to the complex with shortening of H-bond consistent with that of Zhao and Han. On the other hand, the second minimum, which has even lower energy than the first minimum, is likely to be arising from the proton-coupled electron transfer (PCET) process. The nature of the lowest excited state alters from LE to CT type at the second minimum, which may account for the fluorescence quenching phenomena in the system.

7.
Chemistry ; 23(59): 14797-14805, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28792106

RESUMO

Influence of helicity on the excited-state as well as chiroptical properties of two sets of regiohelical coumarins that are differentiated by "inward" and "outward" disposition of the pyran-2-one ring has been investigated. A subtle difference in the helicities manifests in divergent excited-state properties and significant differences in the dipole moments. The latter permit heretofore unprecedented regiodifferentiation in the O-H⋅⋅⋅O hydrogen-bond assisted electron-transfer quenching by phenols. Furthermore, the enantiopure hexahelical coumarins exhibit strong Cotton effects and lend themselves to a very high differentiation in the specific rotations and anisotropic dissymmetry factors. The specific rotation observed for 6-in turns out being the highest of the values reported for all hexahelicenes reported so far.


Assuntos
Cumarínicos/química , Dicroísmo Circular , Cumarínicos/síntese química , Transporte de Elétrons , Ligação de Hidrogênio , Conformação Molecular , Teoria Quântica , Solventes/química , Espectrofotometria , Estereoisomerismo
8.
Phys Chem Chem Phys ; 19(46): 31461-31468, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29159347

RESUMO

Zwitterionic surfactants (e.g. sulfobetaine), comprising both positive and negative groups in their headgroups, are essentially electro-neutral as monomers, but their micelles preferentially uptake anions similar to cationic surfactant micelles. How do the interfacial properties (e.g. interfacial hydration or headgroup packing) of a zwitterionic micelle differ from those of a cationic micelle? For this, we investigated excited-state proton transfer (ESPT) and fluorescence anisotropy decay of an interface-localized negative fluorophore, 8-hydroxypyrene-1,3,6-trisulphonate (HPTS), and its methyl analogue, 8-methoxypyrene-1,3,6-trisulfonate (MPTS), within the micellar interfaces. Two sulfobetaine surfactants (SB-12 and SB-16) and two cationic surfactants (DTAB and CTAB) with matching alkyl tails were selected for an effective comparison. The ESPT dynamics was observed to be significantly suppressed inside the zwitterionic micelle interface compared to that of the cationic micelle. This is attributed to a less hydrated interface of the zwitterionic micelles compared to that of the cationic one. Fluorescence anisotropy decay inside the zwitterionic micellar interface was also slower compared to that of the cationic one indicating a better packing of the zwitterionic surfactants at the interface.

9.
J Phys Chem A ; 121(3): 616-622, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28033003

RESUMO

Recently, we have experimentally demonstrated that the fluorescence intensity of coumarin 102 (C102) modulates anomalously upon hydrogen bonding to phenol in a nonpolar solvent: cyclohexane. The fluorescence intensity is first quenched gradually up to a particular mole fraction (XPH ≈ 0.013) but thereafter increases with further increases in the phenol mole fraction. These studies speculate about the importance of C102-phenol H-bonding to induce photoinduced electron transfer (PET) and propose a competition between the C102-phenol and phenol-phenol H-bonding to account for the anomalous fluorescence modulation. In this work, we investigate the exact H-bonding environment around the acceptor C102 at various compositions by molecular dynamics simulation and correlate the H-bonding environment to the observed fluorescence quenching. In addition to the 1:1 C102-phenol complex, 1:2 C102-(phenol)2 complexes with two different types of geometries were also found. Furthermore, density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations were carried out to understand the H-bonding in these complexes in the ground state and in the excited state and their possible contribution to the observed fluorescence quenching.

10.
Langmuir ; 32(26): 6656-65, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27292367

RESUMO

How does microscopic organization of an organized assembly alter during macroscopic structural transition? The question may be important to ascertain driving forces responsible for such transitions. Didodecyldimethylammonium bromide (DDAB)/water/cyclohexane reverse micelle is an attractive assembly that undergoes structural transition from rod to spherical shape when the amount of water loading, w0 ([water]/[surfactant]), exceeds a particular value (w0 ∼ 8). Here, we intend to investigate the effect of the morphological change upon interfacial hydration using steady-state and time-resolved fluorescence measurements. The anionic fluorophore 8-hydroxypyrene-1,3,6-trisulfonate (HPTS or pyranine) is expected to be trapped within the positively charged RM interface. The fluorophore can undergo excited-state proton transfer (ESPT) in the presence of water and, thus, is able to provide insight on the level of hydration within the interface. The ESPT process is markedly inhibited within the interface at low w0 and gradually favored with increase of w0. The time-resolved fluorescence decays could be best analyzed by assuming distribution of HPTS over two distinct interfacial regions- partly hydrated and mostly dehydrated. The relative population of the two regions varies distinctly at low w0 (<6) and high w0 (>6) regimes. Moreover, fluorescence anisotropy (steady-state and time-resolved) varies differently with respect to w0, before and after the transition point (w0 ∼ 8).

11.
Langmuir ; 32(41): 10659-10667, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27666561

RESUMO

It has been proven previously that the negatively charged photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) resides at the interface of the cationic reverse micelle (RM) cetyltrimethylammonium bromide (CTAB)/octanol/water/cyclohexane and is a potential reporter of hydration through the excited state proton transfer (ESPT) process. However, the ESPT dynamics monitored by the pump-probe study was limited to the ultrafast timescale and hence did not report any discernible ESPT signature. Herein, we reinvestigate the ESPT behavior using fluorescence spectroscopy in the nanosecond timescale and at different values of w0 (=[water]/[surfactant]). We clearly observed distinct w0-dependent ESPT signatures analogous to conventional ternary cationic RMs implying considerable interfacial hydration. The results agree with a recent molecular simulation study, where significant penetration of water molecules into the interface was predicted for the CTAB quaternary RM. Moreover, we also found that the ESPT dynamics and the fluorescence anisotropy decay of HPTS depend differentially on the octanol/CTAB ratio (p0). The ESPT process was found to be disfavored, whereas the anisotropy decay accelerates upon the increase in p0 values. Our analysis indicates that with the increase in the octanol concentration, dehydrated regions enrich gradually at the interface. However, the increase in octanol concentration may reduce the effective electrostatic potential experienced by the probe and thus may result in faster rotational relaxation.

12.
Langmuir ; 31(46): 12587-96, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26540303

RESUMO

Excited state proton transfer (ESPT) of an anionic photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS or pyranine) has been studied inside a cationic reverse micelle (RM), water/benzylhexadecyldimethylammonium chloride (BHDC)/benzene, using steady-state and time-resolved fluorescence spectroscopy. The observed ESPT behavior is found to be remarkably different from the known ESPT trend of HPTS inside anionic AOT and cationic CTAB RMs; the ESPT dynamics approaches that of bulk water at higher w0 (≥10) inside AOT RM while no ESPT was observed for CTAB reverse micelle [ Sedgwick J. Am. Chem. Soc. 2012 , 134 , 11904 - 11907 ]. The ESPT dynamics inside BHDC RM is remarkably slower compared to that of water at all w0 (= [water]/[surfactant]) values and relatively much less sensitive to w0 variation compared to AOT RM. 2D NOESY and fluorescence anisotropy measurements reveal that the probe (HPTS) is embedded inside the positive interface of BHDC RM. Despite its trapped location, HPTS is able to undergo ESPT due to significant penetration of water molecules into the interface. Furthermore, facile ESPT at higher w0 is consistent with higher degree of interface hydration as predicted by a recent MD simulation [ Agazzi Langmuir 2014 , 30 , 9643 - 9653 ]. The study shows that ESPT dynamics inside RM varies not only with the interface charge but also on the nature of the headgroup and solvation.

13.
Phys Chem Chem Phys ; 17(48): 32556-63, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26509256

RESUMO

Despite intensive research, the role of the H-bonding environment on ultrafast PET remains illusive. For example, coumarin 153 (C153) undergoes ultrafast photoinduced electron transfer (PET) in electron-donating solvents, in both aniline (AN) and N,N-dimethylaniline (DMA), despite their very different H-bonding abilities. Thus, donor-acceptor (AN-C153) H-bonding may have only a minor role in PET (Yoshihara and co-workers, J. Phys. Chem. A, 1998, 102, 3089). However, donor-acceptor H-bonding may be somehow less effective in the neat H-bonding environment but could become dominant in the presence of an inert solvent (Phys. Chem. Chem. Phys., 2014, 16, 6159). We successfully applied and tested the proposal here. The nature of PET modulation of C153 in the presence of a passive component cyclohexane is found to be very different for aniline and DMA. Upon addition of cyclohexane to DMA, the PET process gradually becomes retarded but in the case of AN, the PET rate was indeed found to be accelerated at some intermediate composition (mole fraction of aniline, XAN∼ 0.74) compared to that of neat aniline. It is intuitive that cyclohexane may replace some of the donors (AN or DMA) from the vicinity of the acceptor and, thus, should disfavour PET. However, in the hydrogen bonding environment using molecular dynamics simulation, for the first time, we show that the average number of aniline molecules orienting their N-H group in the proximity of the C=O group of C153 is actually higher at the intermediate mole fraction (0.74) of aniline in a mixture rather than in neat aniline. This small but finite excess of C153-AN H-bonding already present in the ground state may possibly account for the anomalous effect. The TD-DFT calculations presented here showed that the intermolecular H-bonding between C153 and AN strengthens from 21.1 kJ mol(-1) in the ground state to 33.0 kJ mol(-1) in the excited state and, consequently, H-bonding may assist PET according to the Zhao and Han model. Thus, we not only justified both the theoretical prediction (efficient H-bond assisted PET within the C153-AN pair) and experimental observation (minor H-bond assisted PET in neat solvent) but also established our previous hypothesis that an inert co-solvent can enhance the effect of H-bonding from molecular insights.

14.
Phys Chem Chem Phys ; 16(48): 27096-103, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25388669

RESUMO

In a previous study, we reported a striking observation that photoinduced electron transfer (PET) from aniline (AN) to photoexcited coumarin 102 (C102) can be accelerated by adding an inert component (cyclohexane or toluene) to the neat electron donor solvent AN (Phys. Chem. Chem. Phys., 2014, 16, 6159-6166). The H-bond linking the electron donor (D, AN) and the acceptor (A, C102) was proposed to dictate the PET process. To account for the unusual variation of quenching pattern with AN mole fraction, two possible reasons were cited - (1) the D-A (AN-C102) H-bonding may be modulated due to change in polarity of the medium or (2) the additional D-D (AN-AN) H-bonding may restrain the D-A H-bonding to adjust optimally for the PET. Here, we investigate the PET of C102 in an AN-dimethylaniline (DMA) mixture to negate the polarity variation. Since, both AN and DMA have similar polarities, the polarity of the mixture should remain invariant at all compositions. Nevertheless, we found that the fluorescence quantum yield and lifetime of C102 in the mixtures follows a similar unusual trend as observed earlier in the AN-toluene or AN-cyclohexane mixtures; it first decreases up to a particular mole fraction (XD) of the H-bond donor AN and, thereafter, increases on further enrichment of the donor. The observed PET modulation may be rationalized by considering efficient PET in the 1 : 1 H-bonded C102-AN complex but less efficient PET in higher order C102-(AN)n≥2 complexes, where additional D-D (AN-AN) H-bonding may influence the key C102-AN H-bonding and thus inhibit the PET process.


Assuntos
Compostos de Anilina/química , Cumarínicos/química , Transporte de Elétrons , Elétrons , Fluorescência , Ligação de Hidrogênio , Processos Fotoquímicos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Phys Chem Chem Phys ; 16(13): 6159-66, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24562294

RESUMO

In a neat electron-donating solvent (in this case aniline), photoinduced electron transfer (PET) from the solvent to an excited acceptor (e.g. a coumarin fluorophore) may be anticipated to be the most efficient because of the close contact of the acceptor with many donors. Addition of an inert component would most likely retard the PET process by replacing some donors from the neighbourhood of the acceptors. Surprisingly, we found dramatic acceleration of PET (6-10 fold enhancement compared to neat aniline), for coumarin 102 (C102) dissolved in a binary mixture of aniline and an inert solvent (cyclohexane or toluene). The PET induced fluorescence follows an anomalous trend against the mole fraction of aniline (XAN); first quenches up to certain XAN (0.075 for cyclohexane; 0.13 for toluene), thereafter, enhances with increase in XAN. Although the non-interacting component cannot directly participate in the PET process, it may modulate C102-aniline H-bonding association by changing the polarity of the medium or by disrupting the aniline-aniline H-bond. The study clearly illustrates the dominant role of hydrogen bonding in activating the electron transfer rate where standard thermodynamics predicts very weak donor-acceptor interaction.


Assuntos
Cumarínicos/química , Solventes/química , Compostos de Anilina/química , Cicloexanos/química , Transporte de Elétrons , Elétrons , Ligação de Hidrogênio , Espectrometria de Fluorescência , Termodinâmica , Tolueno/química
16.
J Phys Chem Lett ; 15(13): 3677-3682, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535976

RESUMO

Lead halide perovskites suffer from water and moisture instability due to the highly ionic nature of the crystal structures, though a few groups took advantage of it for chemical transformation via water-assisted strategy. However, direct exposure of the perovskite to bulk water leads to uncontrolled chemical transformation. Here, we report a controlled chemical transformation of CsPbBr3 to CsPb2Br5 triggered by nanoconfined water by placing CsPbBr3 in the nonpolar phase within a reverse micelle. The chemical transformation reaction is probed by using steady-state and time-resolved optical spectroscopy. We observe absorption and photoluminescence in the UV region stemming clearly from the CsPb2Br5 phase upon interaction with the reverse micellar aqueous solution. Transmission electron microscopy and X-ray diffraction measurements further provided the structure and morphology. Our results direct the formation of CsPbBr3-CsPb2Br5 nanocomposite under dry conditions while the chemically transformed CsPb2Br5 phase exists only in moist conditions, which we explain via the CsBr-stripping mechanism.

17.
Chem Asian J ; : e202400633, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031487

RESUMO

An assembly of metal nanoclusters driven by appropriate surface ligands and solvent environment may engender entirely new photoluminescence (PL). Herein, we first synthesize histidine (His) stabilized copper nanoparticles (CuNPs) and, subsequently, copper nanoclusters (CuNCs) from it using 3-mercaptopropionic acid (MPA) as an etchant. The CuNCs originally emit bluish-green (λem=470 nm) PL with a low quantum yield (QY∼1.8%). However, it transformed into a dual-emissive nanocluster assembly (Zn-CuNCs) in the presence of Zn(II) salt, having a distinct blue emission band (λem = 420 nm) and a red emission band (λem = 615 nm) with eight times QY (∼9.1%) enhancement. Adding dimethyl sulfoxide (DMSO) further modifies the emission intensities; the red band was amplified four times, while the blue band was diminished by 2.5 times. The transmission electron microscopy (TEM) images unveiled that the Zn-CuNCs are a large assembly of tiny nanoclusters, which become more compact in DMSO. The blue emission possesses steady-state fluorescence anisotropy, while the red emission shows no anisotropy. Further, near-perfect white light emission(WLE) was rendered with CIE coordinates of (0.33, 0.32) by combining the dual emission of the Zn-CuNCs with the original green emission of the CuNCs.

18.
J Am Chem Soc ; 135(3): 1002-5, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23286737

RESUMO

Measurements of biexciton decays in semiconductor nanoparticles are easily contaminated by contributions from photoproducts or higher excitons. Theoretical work has shown that multiple population-period transient spectroscopy (MUPPETS) can measure biexciton decays free from these interferences. In this communication, the biexciton decay of CdSe/ZnS core-shell nanoparticles is measured with MUPPETS. The decay is strongly dispersed (nonexponential) with a more than 5-fold range of rates. This large dispersion must be accounted for in the decay mechanism and in the measurement of biexciton dynamics by more conventional methods. The success of MUPPETS in this context lays the foundation for using it to study exciton-exciton interactions in a variety of materials.

19.
J Phys Chem A ; 117(19): 3945-53, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23617830

RESUMO

The fate of intermolecular hydrogen bond (H-bond) upon electronic excitation of a H-bonded complex has been debated in literature. For a model H-bonded complex, coumarin 102 (C102)-phenol in a noninteracting solvent ethylene tetrachloride, time-resolved infrared spectroscopy experiment of Nibbering and coworkers suggests that the H-bond between the C102 and phenol ruptures upon electronic excitation (C. Chudoba et al. J. Phys. Chem. A1999, 103, 5625-5628). On the contrary, Zhao and Han have demonstrated for the first time that the intermolecular hydrogen bond is significantly strengthened, while not disrupted, in the electronically excited states of the hydrogen-bonded complexes upon electronic excitation using the time-dependent density functional theory method (G. J. Zhao and K. L. Han J. Phys. Chem. A2007, 111, 2469-2474). The two excited-state hydrogen bonding dynamics mechanisms have widely different predictions of the emission or electronic relaxation of the excited H-bonded complex. The excited-state hydrogen-bond strengthening mechanism proposed by Zhao and Han anticipates a stronger intermolecular interaction, while the H-bond breaking mechanism speculates no interaction between C102 and phenol. The speculation has been tested here on the same system (H-bonded C102-phenol complex) in another noninteracting solvent cyclohexane. We found a strong quenching of the C102 emission in the H-bonded complex. Selectively excited (λex = 405 nm) H-bonded complex relaxes on a fast time scale of 400-600 ps and may be attributed to the conversion of the locally excited (LE) state to a nonfluorescent charge transfer (CT) state assisted by the strong excited-state H-bond formation. A minor component (∼10%) of 2.5 to 1.8 ns is ascribed to the LE complex without a H-bond. The findings are in accordance with the new fluorescence quenching mechanism that the excited-state intermolecular hydrogen bond strengthening facilitates CT from phenol to coumarin in the excited state (G. J. Zhao et al. J. Phys. Chem. B2007, 111, 8940-8945). Fluorescence quenching was absent for anisole, where H-bond formation is not possible and was more pronounced for p-Cl-phenol, where even stronger H-bonding is expected.

20.
Nano Lett ; 11(8): 3493-8, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21780773

RESUMO

The kinetics of electron trapping in CdSe nanoparticles are examined from 0.5 ps to 1.8 ns. The ensemble kinetics fit a slow power law, but two-dimensional measurements show that the decay of each nanoparticle is exponential. A model is proposed in which defect sites provide a gateway for surface trapping and are randomly distributed on the surface. The electric field from the particle's dipole moment creates the observed heterogeneity in rates.


Assuntos
Compostos de Cádmio , Elétrons , Nanopartículas , Compostos de Selênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA