Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(6): 2837-2853, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34897962

RESUMO

Deep terrestrial subsurface represents a huge repository of global prokaryotic biomass. Given its vastness and importance, microbial life within the deep subsurface continental crust remains under-represented in global studies. We characterize the microbial communities of deep, extreme and oligotrophic realm hosted by crystalline Archaean granitic rocks underneath the Deccan Traps, through sampling via 3000 m deep scientific borehole at Koyna, India through metagenomics, amplicon sequencing and cultivation-based analyses. Gene sequences 16S rRNA (7.37 × 106 ) show considerable bacterial diversity and the existence of a core microbiome (5724 operational taxonomic units conserved out of a total 118,064 OTUs) across the depths. Relative abundance of different taxa of core microbiome varies with depth in response to prevailing lithology and geochemistry. Co-occurrence network analysis and cultivation attempt to elucidate close interactions among autotrophic and organotrophic bacteria. Shotgun metagenomics reveals a major role of autotrophic carbon fixation via the Wood-Ljungdahl pathway and genes responsible for energy and carbon metabolism. Deeper analysis suggests the existence of an 'acetate switch', coordinating biosynthesis and cellular homeostasis. We conclude that the microbial life in the nutrient- and energy-limited deep granitic crust is constrained by the depth and managed by a few core members via a close interplay between autotrophy and organotrophy.


Assuntos
Metagenômica , Microbiota , Bactérias , Ciclo do Carbono , Índia , Microbiota/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
2.
World J Microbiol Biotechnol ; 38(10): 171, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907093

RESUMO

Rare microbial taxa [bacterial and archaeal operational taxonomic units (OTUs) with mean relative abundance ≤ 0.001%] were critical for ecosystem function, yet, their identity and function remained incompletely understood, particularly in arsenic (As) contaminated rice soils. In the present study we have characterized the rare populations of the As-contaminated rice soil microbiomes from West Bengal (India) in terms of their identity, interaction and potential function. Major proportion of the OTUs (73% of total 38,289 OTUs) was represented by rare microbial taxa (henceforth mentioned as rare taxa), which covered 4.5-15.7% of the different communities. Taxonomic assignment of the rare taxa showed their affiliation to members of Gamma-, Alpha-, Delta- Proteobacteria, Actinobacteria, and Acidobacteria. SO42-, NO3-, NH4+and pH significantly impacted the distribution of rare taxa. Rare taxa positively correlated with As were found to be more frequent in relatively high As soil while the rare taxa negatively correlated with As were found to be more frequent in relatively low As soil. Co-occurrence-network analysis indicated that rare taxa whose abundance were correlated strongly (R > 0.8) with As also had strong association (R > 0.8) with PO42-, NO3-, and NH4+. Correlation analysis indicated that the rare taxa were likely to involved in two major guilds one, involved in N-metabolism and the second involved in As/Fe as well as other metabolisms. Role of the rare taxa in denitrification and dissimilatory NO3- reduction (DNRA), As biotransformation, S-, H-, C- and Fe-, metabolism was highlighted from 16S rRNA gene-based predictive analysis. Phylogenetic analysis of rare taxa indicated signatures of inhabitant rice soil microorganisms having significant roles in nitrogen (N) cycle and As-Fe metabolism. This study provided critical insights into the taxonomic identity, metabolic potentials and importance of the rare taxa in As biotransformation and biogeochemical cycling of essential nutrients in As-impacted rice soils.


Assuntos
Arsênio , Microbiota , Oryza , Poluentes do Solo , Arsênio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Oryza/genética , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
3.
Sci Total Environ ; 841: 156486, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667424

RESUMO

Paddy soil is a heterogenous ecosystem that harbours diverse microbial communities critical for maintaining ecosystem sustainability and crop yield. Considering the importance of soil in crop production and recent reports on its contamination with arsenic (As) across the South East Asia, its microbial community composition and biogeochemical functions remained inadequately studied. We have characterized the microbial communities of rice soil from eleven paddy fields of As-contaminated sites from West Bengal (India), through metagenomics and amplicon sequencing. 16S rRNA gene sequencing showed considerable bacterial diversity [over 0.2 million Operational Taxonomic Units (OTUs)] and abundance (upto 1.6 × 107 gene copies/g soil). Existence of a core-microbiome (261 OTUs conserved out of a total 141,172 OTUs) across the samples was noted. Most of the core-microbiome members were also found to represent the abundant taxa of the soil. Statistical analyses suggested that the microbial communities were highly constrained by As, Fe K, N, PO43-, SO42- and organic carbon (OC). Members of Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Planctomycetes and Thaumarchaeota constituted the core-microbiome. Co-occurrence network analysis displayed significant interaction among diverse anaerobic, SO42- and NO3- reducing, cellulose and other organic matter or C1 compound utilizing, fermentative and aerobic/facultative anaerobic bacteria and archaea. Correlation analysis suggested that taxa which were positively linked with soil parameters that maintain soil health and productivity (e.g., N, K, PO43- and Fe) were adversely impacted by increasing As concentration. Shotgun metagenomics highlighted major metabolic pathways controlling the C (3-hydroxypropionate bicycle), N (Denitrification, dissimilatory NO3- reduction to ammonium), and S (assimilatory SO42- reduction and sulfide oxidation) cycling, As homeostasis (methylation and reduction) and plant growth promotion (polyphosphate hydrolysis and auxin biosynthesis). All these major biogeochemical processes were found to be catalyzed by the members of most abundant/core-community.


Assuntos
Arsênio , Microbiota , Oryza , Archaea , Arsênio/análise , Bactérias/metabolismo , Oryza/genética , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
4.
Front Microbiol ; 13: 1018940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504802

RESUMO

Characterization of inorganic carbon (C) utilizing microorganisms from deep crystalline rocks is of major scientific interest owing to their crucial role in global carbon and other elemental cycles. In this study we investigate the microbial populations from the deep [up to 2,908 meters below surface (mbs)] granitic rocks within the Koyna seismogenic zone, reactivated (enriched) under anaerobic, high temperature (50°C), chemolithoautotrophic conditions. Subsurface rock samples from six different depths (1,679-2,908 mbs) are incubated (180 days) with CO2 (+H2) or HCO3 - as the sole C source. Estimation of total protein, ATP, utilization of NO3 - and SO4 2- and 16S rRNA gene qPCR suggests considerable microbial growth within the chemolithotrophic conditions. We note a better response of rock hosted community towards CO2 (+H2) over HCO3 -. 16S rRNA gene amplicon sequencing shows a depth-wide distribution of diverse chemolithotrophic (and a few fermentative) Bacteria and Archaea. Comamonas, Burkholderia-Caballeronia-Paraburkholderia, Ralstonia, Klebsiella, unclassified Burkholderiaceae and Enterobacteriaceae are reactivated as dominant organisms from the enrichments of the deeper rocks (2335-2,908 mbs) with both CO2 and HCO3 -. For the rock samples from shallower depths, organisms of varied taxa are enriched under CO2 (+H2) and HCO3 -. Pseudomonas, Rhodanobacter, Methyloversatilis, and Thaumarchaeota are major CO2 (+H2) utilizers, while Nocardioides, Sphingomonas, Aeromonas, respond towards HCO3 -. H2 oxidizing Cupriavidus, Hydrogenophilus, Hydrogenophaga, CO2 fixing Cyanobacteria Rhodobacter, Clostridium, Desulfovibrio and methanogenic archaea are also enriched. Enriched chemolithoautotrophic members show good correlation with CO2, CH4 and H2 concentrations of the native rock environments, while the organisms from upper horizons correlate more to NO3 -, SO4 2- , Fe and TIC levels of the rocks. Co-occurrence networks suggest close interaction between chemolithoautotrophic and chemoorganotrophic/fermentative organisms. Carbon fixing 3-HP and DC/HB cycles, hydrogen, sulfur oxidation, CH4 and acetate metabolisms are predicted in the enriched communities. Our study elucidates the presence of live, C and H2 utilizing Bacteria and Archaea in deep subsurface granitic rocks, which are enriched successfully. Significant impact of depth and geochemical controls on relative distribution of various chemolithotrophic species enriched and their C and H2 metabolism are highlighted. These endolithic microorganisms show great potential for answering the fundamental questions of deep life and their exploitation in CO2 capture and conversion to useful products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA