Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Disord Drug Targets ; 24(1): e230623218222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37357523

RESUMO

Bee venoms are well-known for their important biological activities. More specifically, the venom of Apis mellifera syriaca was shown to exhibit various biological effects, including antimicrobial effects. It is suggested that the anti-microbial effect of venom could be accompanied by an immunomodulatory response in the host favoring anti-inflammatory responses. Thus, in this work, we investigated, for the first time, the immunomodulatory effects of A. mellifera syriaca venom in mice. Firstly, it was found that this venom exhibited mild toxicity in BALB/c mice after intraperitoneal injection with an LD50 of 3.8 mg/kg. We then investigated its immunomodulatory effects by evaluating the splenic levels of both pro- and anti-inflammatory cytokines in mice by ELISA. Interestingly, at 1 mg/kg, A. mellifera syriaca venom induced a decrease in IFN-γ, TNF-α, IL-4, and IL-10 at 24h postinjection. At a higher dose (3 mg/kg), an increase in IFN-γ and IL-4 levels was observed, while the levels of TNF-α and IL-10 remained low compared to the control. Altogether, these preliminary data suggest that A. mellifera syriaca venom exhibits anti-inflammatory effects at a sublethal dose (1 mg/kg), while at a higher dose (3 mg/kg), it induces inflammatory effects.


Assuntos
Citocinas , Interleucina-10 , Camundongos , Abelhas , Animais , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos BALB C , Interleucina-4 , Anti-Inflamatórios/farmacologia
2.
Antibiotics (Basel) ; 12(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37760677

RESUMO

Scorpion venoms have long captivated scientific researchers, primarily due to the potency and specificity of the mechanism of action of their derived components. Among other molecules, these venoms contain highly active compounds, including antimicrobial peptides (AMPs) and ion channel-specific components that selectively target biological receptors with remarkable affinity. Some of these receptors have emerged as prime therapeutic targets for addressing various human pathologies, including cancer and infectious diseases, and have served as models for designing novel drugs. Consequently, extensive biochemical and proteomic investigations have focused on characterizing scorpion venoms. This review provides a comprehensive overview of the key methodologies used in the extraction, purification, analysis, and characterization of AMPs and other bioactive molecules present in scorpion venoms. Noteworthy techniques such as gel electrophoresis, reverse-phase high-performance liquid chromatography, size exclusion chromatography, and "omics" approaches are explored, along with various combinations of methods that enable bioassay-guided venom fractionation. Furthermore, this review presents four adapted proteomic workflows that lead to the comprehensive dissection of the scorpion venom proteome, with an emphasis on AMPs. These workflows differ based on whether the venom is pre-fractionated using separation techniques or is proteolytically digested directly before further proteomic analyses. Since the composition and functionality of scorpion venoms are species-specific, the selection and sequence of the techniques for venom analyses, including these workflows, should be tailored to the specific parameters of the study.

3.
Biology (Basel) ; 11(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35741410

RESUMO

The complications following snake bite envenoming are due to the venom's biological activities, which can act on different systems of the prey. These activities arise from the fact that snake venoms are rich in bioactive molecules, which are also of interest for designing drugs. The venom of Montivipera bornmuelleri, known as the Lebanon viper, has been shown to exert antibacterial, anticancer, and immunomodulatory effects. However, the venom's activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Because zebrafish is a convenient model to study tissue alterations induced by toxic agents, we challenged it with the venom of Montivipera bornmuelleri. We show that this venom leads to developmental toxicity but not teratogenicity in zebrafish embryos. The venom also induces neurotoxic effects and disrupts the zebrafish cardiovascular system, leading to heartbeat rate reduction and hemorrhage. Our findings demonstrate the potential neurotoxicity and cardiotoxicity of M. bornmuelleri's venom, suggesting a multitarget strategy during envenomation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA