Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1811-1815.e3, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701742

RESUMO

Post-translational modifications of proteins (PTMs) introduce an extra layer of complexity to cellular regulation. Although phosphorylation of serine, threonine, and tyrosine residues is well-known as PTMs, lysine is, in fact, the most heavily modified amino acid, with over 30 types of PTMs on lysine having been characterized. One of the most recently discovered PTMs on lysine residues is polyphosphorylation, which sees linear chains of inorganic polyphosphates (polyP) attached to lysine residues. The labile nature of phosphoramidate bonds raises the question of whether this modification is covalent in nature. Here, we used buffers with very high ionic strength, which would disrupt any non-covalent interactions, and confirmed that lysine polyphosphorylation occurs covalently on proteins containing PASK domains (polyacidic, serine-, and lysine-rich), such as the budding yeast protein nuclear signal recognition 1 (Nsr1) and the mammalian protein nucleolin. This Matters Arising Response paper addresses the Neville et al. (2024) Matters Arising paper, published concurrently in Molecular Cell.


Assuntos
Lisina , Fosfoproteínas , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA , Fosforilação , Lisina/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Nucleolina , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Animais , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Polifosfatos/metabolismo , Polifosfatos/química , Concentração Osmolar
2.
EMBO J ; 43(3): 462-480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216735

RESUMO

Kinases that synthesize inositol phosphates (IPs) and pyrophosphates (PP-IPs) control numerous biological processes in eukaryotic cells. Herein, we extend this cellular signaling repertoire to viruses. We have biochemically and structurally characterized a minimalist inositol phosphate kinase (i.e., TvIPK) encoded by Terrestrivirus, a nucleocytoplasmic large ("giant") DNA virus (NCLDV). We show that TvIPK can synthesize inositol pyrophosphates from a range of scyllo- and myo-IPs, both in vitro and when expressed in yeast cells. We present multiple crystal structures of enzyme/substrate/nucleotide complexes with individual resolutions from 1.95 to 2.6 Å. We find a heart-shaped ligand binding pocket comprising an array of positively charged and flexible side chains, underlying the observed substrate diversity. A crucial arginine residue in a conserved "G-loop" orients the γ-phosphate of ATP to allow substrate pyrophosphorylation. We highlight additional conserved catalytic and architectural features in TvIPK, and support their importance through site-directed mutagenesis. We propose that NCLDV inositol phosphate kinases may have assisted evolution of inositol pyrophosphate signaling, and we discuss the potential biogeochemical significance of TvIPK in soil niches.


Assuntos
Difosfatos , Vírus Gigantes , Difosfatos/metabolismo , Vírus Gigantes/metabolismo , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(34): e2306868120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579180

RESUMO

Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly ß-lapachone (ß-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that ß-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that ß-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with ß-lap. The data presented here unveil unique aspects of ß-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.


Assuntos
Diabetes Mellitus Tipo 2 , Naftoquinonas , Humanos , Trifosfato de Adenosina , Linhagem Celular Tumoral , Difosfatos , Peróxido de Hidrogênio/metabolismo , Inositol , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/farmacologia , Oxigênio , Espécies Reativas de Oxigênio/metabolismo
4.
J Am Soc Nephrol ; 35(4): 441-455, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317282

RESUMO

SIGNIFICANCE STATEMENT: Kidneys are gatekeepers of systemic inorganic phosphate balance because they control urinary phosphate excretion. In yeast and plants, inositol hexakisphosphate kinases (IP6Ks) are central to regulate phosphate metabolism, whereas their role in mammalian phosphate homeostasis is mostly unknown. We demonstrate in a renal cell line and in mice that Ip6k1 and Ip6k2 are critical for normal expression and function of the major renal Na + /Pi transporters NaPi-IIa and NaPi-IIc. Moreover, Ip6k1/2-/- mice also show symptoms of more generalized kidney dysfunction. Thus, our results suggest that IP6Ks are essential for phosphate metabolism and proper kidney function in mammals. BACKGROUND: Inorganic phosphate is an essential mineral, and its plasma levels are tightly regulated. In mammals, kidneys are critical for maintaining phosphate homeostasis through mechanisms that ultimately regulate the expression of the Na + /Pi cotransporters NaPi-IIa and NaPi-IIc in proximal tubules. Inositol pyrophosphate 5-IP 7 , generated by IP6Ks, is a main regulator of phosphate metabolism in yeast and plants. IP6Ks are conserved in mammals, but their role in phosphate metabolism in vivo remains unexplored. METHODS: We used in vitro (opossum kidney cells) and in vivo (renal tubular-specific Ip6k1/2-/- mice) models to analyze the role of IP6K1/2 in phosphate homeostasis in mammals. RESULTS: In both systems, Ip6k1 and Ip6k2 are responsible for synthesis of 5-IP 7 . Depletion of Ip6k1/2 in vitro reduced phosphate transport and mRNA expression of Na + /Pi cotransporters, and it blunts phosphate transport adaptation to changes in ambient phosphate. Renal ablation of both kinases in mice also downregulates the expression of NaPi-IIa and NaPi-IIc and lowered the uptake of phosphate into proximal renal brush border membranes. In addition, the absence of Ip6k1 and Ip6k2 reduced the plasma concentration of fibroblast growth factor 23 and increased bone resorption, despite of which homozygous males develop hypophosphatemia. Ip6k1/2-/- mice also show increased diuresis, albuminuria, and hypercalciuria, although the morphology of glomeruli and proximal brush border membrane seemed unaffected. CONCLUSIONS: Depletion of renal Ip6k1/2 in mice not only altered phosphate homeostasis but also dysregulated other kidney functions.


Assuntos
Túbulos Renais , Fosfotransferases (Aceptor do Grupo Fosfato) , Animais , Masculino , Camundongos , Rim/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Túbulos Renais/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
5.
J Biol Chem ; 299(3): 102928, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681123

RESUMO

Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.


Assuntos
Sistema Nervoso Entérico , Fosfatos de Inositol , Transcriptoma , Animais , Camundongos , Difosfatos/análise , Difosfatos/metabolismo , Sistema Nervoso Entérico/crescimento & desenvolvimento , Sistema Nervoso Entérico/metabolismo , Fosfatos de Inositol/análise , Fosfatos de Inositol/metabolismo , Camundongos Knockout , Neurônios/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ácido Fítico/metabolismo , Trato Gastrointestinal/metabolismo
6.
Biochem Soc Trans ; 51(5): 1947-1956, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844192

RESUMO

Inorganic polyphosphate (polyP), the polymeric form of phosphate, is attracting ever-growing attention due to the many functions it appears to perform within mammalian cells. This essay does not aim to systematically review the copious mammalian polyP literature. Instead, we examined polyP synthesis and functions in various microorganisms and used an evolutionary perspective to theorise key issues of this field and propose solutions. By highlighting the presence of VTC4 in distinct species of very divergent eucaryote clades (Opisthokonta, Viridiplantae, Discoba, and the SAR), we propose that whilst polyP synthesising machinery was present in the ancestral eukaryote, most lineages subsequently lost it during evolution. The analysis of the bacteria-acquired amoeba PPK1 and its unique polyP physiology suggests that eukaryote cells must have developed mechanisms to limit cytosolic polyP accumulation. We reviewed the literature on polyP in the mitochondria from the perspective of its endosymbiotic origin from bacteria, highlighting how mitochondria could possess a polyP physiology reminiscent of their 'bacterial' beginning that is not yet investigated. Finally, we emphasised the similarities that the anionic polyP shares with the better-understood negatively charged polymers DNA and RNA, postulating that the nucleus offers an ideal environment where polyP physiology might thrive.


Assuntos
Mamíferos , Polifosfatos , Animais , Células Eucarióticas , Mitocôndrias , Biologia
7.
Plant Physiol ; 190(4): 2722-2738, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124979

RESUMO

The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOG 1 (ASK1), and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferases (Aceptor do Grupo Álcool) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos de Inositol/metabolismo , Plantas/metabolismo , Polifosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
8.
Mol Cell ; 58(1): 71-82, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25773596

RESUMO

The complexity of higher organisms is not simply a reflection of the number of genes. A network of additional regulatory features, including protein post-translational modifications (PTMs), provides functional complexity otherwise inaccessible to a single gene product. Virtually all proteins are targets of PTMs. Here we characterize "polyphosphorylation" as the covalent attachment of inorganic polyphosphate (polyP) to target proteins. We found that nuclear signal recognition 1 (Nsr1) and its interacting partner, topoisomerase 1 (Top1), are polyphosphorylated. This modification occurs on lysine (K) residues within a conserved N-terminal polyacidic serine (S) and K-rich (PASK) cluster. We show that polyphosphorylation negatively regulates Nsr1/Top1 interaction and impairs Top1 enzymatic activity. Physiological modulation of cellular levels of polyP regulates Top1 activity by modifying its polyphosphorylation status. We propose that polyphosphorylation adds an additional layer of regulation to nuclear signaling, where many PASK-containing proteins are known to play important roles.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Lisina/metabolismo , Sinais de Localização Nuclear/metabolismo , Polifosfatos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , DNA Topoisomerases Tipo I/genética , Humanos , Lisina/genética , Dados de Sequência Molecular , Sinais de Localização Nuclear/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 116(49): 24551-24561, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31754032

RESUMO

Inositol phosphates (IPs) comprise a network of phosphorylated molecules that play multiple signaling roles in eukaryotes. IPs synthesis is believed to originate with IP3 generated from PIP2 by phospholipase C (PLC). Here, we report that in mammalian cells PLC-generated IPs are rapidly recycled to inositol, and uncover the enzymology behind an alternative "soluble" route to synthesis of IPs. Inositol tetrakisphosphate 1-kinase 1 (ITPK1)-found in Asgard archaea, social amoeba, plants, and animals-phosphorylates I(3)P1 originating from glucose-6-phosphate, and I(1)P1 generated from sphingolipids, to enable synthesis of IP6 We also found using PAGE mass assay that metabolic blockage by phosphate starvation surprisingly increased IP6 levels in a ITPK1-dependent manner, establishing a route to IP6 controlled by cellular metabolic status, that is not detectable by traditional [3H]-inositol labeling. The presence of ITPK1 in archaeal clades thought to define eukaryogenesis indicates that IPs had functional roles before the appearance of the eukaryote.


Assuntos
Fosfatos de Inositol/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sequência Conservada , Células HCT116 , Humanos , Hidrólise , Inositol/metabolismo , Fosfatos de Inositol/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Fosfolipases Tipo C/metabolismo
10.
Angew Chem Int Ed Engl ; 61(5): e202112457, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34734451

RESUMO

Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18 O-labelled phosphates is presented, based on a family of modified 18 O2 -phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18 O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18 O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry.


Assuntos
Compostos Organofosforados
11.
Trends Biochem Sci ; 42(3): 219-231, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27876550

RESUMO

Phosphate, as a cellular energy currency, essentially drives most biochemical reactions defining living organisms, and thus its homeostasis must be tightly regulated. Investigation into the role of inositol pyrophosphates (PP-IPs) has provided a novel perspective on the regulation of phosphate homeostasis. Recent data suggest that metabolic and signaling interplay between PP-IPs, ATP, and inorganic polyphosphate (polyP) influences and is influenced by cellular phosphate homeostasis. Different studies have demonstrated that the SPX protein domain is a key component of proteins involved in phosphate metabolism. How PP-IPs control some aspects of phosphate homeostasis has become clearer with the recently acquired crystal structures of SPX domains. We review here recent studies on eukaryote phosphate homeostasis and provide insights into future research.


Assuntos
Células Eucarióticas/metabolismo , Homeostase , Fosfatos de Inositol/metabolismo , Humanos
12.
J Biol Chem ; 295(28): 9366-9378, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32393577

RESUMO

Solute carrier family 20 member 2 (SLC20A2) and xenotropic and polytropic retrovirus receptor 1 (XPR1) are transporters with phosphate uptake and efflux functions, respectively. Both are associated with primary familial brain calcification (PFBC), a genetic disease characterized by cerebral calcium-phosphate deposition and associated with neuropsychiatric symptoms. The association of the two transporters with the same disease suggests that they jointly regulate phosphate fluxes and cellular homeostasis, but direct evidence is missing. Here, we found that cross-talk between SLC20A2 and XPR1 regulates phosphate homeostasis, and we identified XPR1 as a key inositol polyphosphate (IP)-dependent regulator of this process. We found that overexpression of WT SLC20A2 increased phosphate uptake, as expected, but also unexpectedly increased phosphate efflux, whereas PFBC-associated SLC20A2 variants did not. Conversely, SLC20A2 depletion decreased phosphate uptake only slightly, most likely compensated for by the related SLC20A1 transporter, but strongly decreased XPR1-mediated phosphate efflux. The SLC20A2-XPR1 axis maintained constant intracellular phosphate and ATP levels, which both increased in XPR1 KO cells. Elevated ATP levels are a hallmark of altered inositol pyrophosphate (PP-IP) synthesis, and basal ATP levels were restored after phosphate efflux rescue with WT XPR1 but not with XPR1 harboring a mutated PP-IP-binding pocket. Accordingly, inositol hexakisphosphate kinase 1-2 (IP6K1-2) gene inactivation or IP6K inhibitor treatment abolished XPR1-mediated phosphate efflux regulation and homeostasis. Our findings unveil an SLC20A2-XPR1 interplay that depends on IPs such as PP-IPs and controls cellular phosphate homeostasis via the efflux route, and alteration of this interplay likely contributes to PFBC.


Assuntos
Homeostase , Fosfatos de Inositol/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virais/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Humanos , Fosfatos de Inositol/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Virais/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Receptor do Retrovírus Politrópico e Xenotrópico
13.
J Biol Chem ; 295(6): 1439-1451, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31844018

RESUMO

A recently-discovered protein post-translational modification, lysine polyphosphorylation (K-PPn), consists of the covalent attachment of inorganic polyphosphate (polyP) to lysine residues. The nonenzymatic nature of K-PPn means that the degree of this modification depends on both polyP abundance and the amino acids surrounding the modified lysine. K-PPn was originally discovered in budding yeast (Saccharomyces cerevisiae), in which polyP anabolism and catabolism are well-characterized. However, yeast vacuoles accumulate large amounts of polyP, and upon cell lysis, the release of the vacuolar polyP could nonphysiologically cause K-PPn of nuclear and cytosolic targets. Moreover, yeast vacuoles possess two very active endopolyphosphatases, Ppn1 and Ppn2, that could have opposing effects on the extent of K-PPn. Here, we characterized the contribution of vacuolar polyP metabolism to K-PPn of two yeast proteins, Top1 (DNA topoisomerase 1) and Nsr1 (nuclear signal recognition 1). We discovered that whereas Top1-targeting K-PPn is only marginally affected by vacuolar polyP metabolism, Nsr1-targeting K-PPn is highly sensitive to the release of polyP and of endopolyphosphatases from the vacuole. Therefore, to better study K-PPn of cytosolic and nuclear targets, we constructed a yeast strain devoid of vacuolar polyP by targeting the exopolyphosphatase Ppx1 to the vacuole and concomitantly depleting the two endopolyphosphatases (ppn1Δppn2Δ, vt-Ppx1). This strain enabled us to study K-PPn of cytosolic and nuclear targets without the interfering effects of cell lysis on vacuole polyP and of endopolyphosphatases. Furthermore, we also define the fundamental nature of the acidic amino acid residues to the K-PPn target domain.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Polifosfatos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Vacúolos/metabolismo
14.
J Biol Chem ; 294(30): 11597-11608, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31186349

RESUMO

Phosphate's central role in most biochemical reactions in a living organism requires carefully maintained homeostasis. Although phosphate homeostasis in mammals has long been studied at the organismal level, the intracellular mechanisms controlling phosphate metabolism are not well-understood. Inositol pyrophosphates have emerged as important regulatory elements controlling yeast phosphate homeostasis. To verify whether inositol pyrophosphates also regulate mammalian cellular phosphate homeostasis, here we knocked out inositol hexakisphosphate kinase (IP6K) 1 and IP6K2 to generate human HCT116 cells devoid of any inositol pyrophosphates. Using PAGE and HPLC analysis, we observed that the IP6K1/2-knockout cells have nondetectable levels of the IP6-derived IP7 and IP8 and also exhibit reduced synthesis of the IP5-derived PP-IP4 Nucleotide analysis showed that the knockout cells contain increased amounts of ATP, whereas the Malachite green assay found elevated levels of free intracellular phosphate. Furthermore, [32Pi] pulse labeling experiments uncovered alterations in phosphate flux, with both import and export of phosphate being decreased in the knockout cells. Functional analysis of the phosphate exporter xenotropic and polytropic retrovirus receptor 1 (XPR1) revealed that it is regulated by inositol pyrophosphates, which can bind to its SPX domain. We conclude that IP6K1 and -2 together control inositol pyrophosphate metabolism and thereby physiologically regulate phosphate export and other aspects of mammalian cellular phosphate homeostasis.


Assuntos
Homeostase , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Receptor do Retrovírus Politrópico e Xenotrópico
15.
J Cell Sci ; 131(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30154210

RESUMO

Sorting endosomes (SEs) are the regulatory hubs for sorting cargo to multiple organelles, including lysosome-related organelles, such as melanosomes in melanocytes. In parallel, melanosome biogenesis is initiated from SEs with the processing and sequential transport of melanocyte-specific proteins toward maturing melanosomes. However, the mechanism of cargo segregation on SEs is largely unknown. Here, RNAi screening in melanocytes revealed that knockdown of Rab4A results in defective melanosome maturation. Rab4A-depletion increases the number of vacuolar endosomes and disturbs the cargo sorting, which in turn lead to the mislocalization of melanosomal proteins to lysosomes, cell surface and exosomes. Rab4A localizes to the SEs and forms an endosomal complex with the adaptor AP-3, the effector rabenosyn-5 and the motor KIF3, which possibly coordinates cargo segregation on SEs. Consistent with this, inactivation of rabenosyn-5, KIF3A or KIF3B phenocopied the defects observed in Rab4A-knockdown melanocytes. Further, rabenosyn-5 was found to associate with rabaptin-5 or Rabip4/4' (isoforms encoded by Rufy1) and differentially regulate cargo sorting from SEs. Thus, Rab4A acts a key regulator of cargo segregation on SEs.This article has an associated First Person interview with the first author of the paper.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Humanos
16.
Biochem Soc Trans ; 48(1): 95-101, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049314

RESUMO

Inorganic polyphosphate (polyP) is a ubiquitous polymer of tens to hundreds of orthophosphate residues linked by high-energy phosphoanhydride bonds. In prokaryotes and lower eukaryotes, both the presence of polyP and of the biosynthetic pathway that leads to its synthesis are well-documented. However, in mammals, polyP is more elusive. Firstly, the mammalian enzyme responsible for the synthesis of this linear biopolymer is unknown. Secondly, the low sensitivity and specificity of available polyP detection methods make it difficult to confidently ascertain polyP presence in mammalian cells, since in higher eukaryotes, polyP exists in lower amounts than in yeast or bacteria. Despite this, polyP has been given a remarkably large number of functions in mammals. In this review, we discuss some of the proposed functions of polyP in mammals, the limitations of the current detection methods and the urgent need to understand how this polymer is synthesized.


Assuntos
Mamíferos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Hidrolases Anidrido Ácido/metabolismo , Animais , Humanos , Fosfolipase D/metabolismo
17.
BMC Bioinformatics ; 20(Suppl 4): 124, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999847

RESUMO

BACKGROUND: RNA editing is an important mechanism for gene expression in plants organelles. It alters the direct transfer of genetic information from DNA to proteins, due to the introduction of differences between RNAs and the corresponding coding DNA sequences. Software tools successful for the search of genes in other organisms not always are able to correctly perform this task in plants organellar genomes. Moreover, the available software tools predicting RNA editing events utilise algorithms that do not account for events which may generate a novel start codon. RESULTS: We present FEDRO, a Java software tool implementing a novel strategy to generate candidate Open Reading Frames (ORFs) resulting from Cytidine to Uridine (c→u) editing substitutions which occur in the mitochondrial genome (mtDNA) of a given input plant. The goal is to predict putative proteins of plants mitochondria that have not been yet annotated. In order to validate the generated ORFs, a screening is performed by checking for sequence similarity or presence in active transcripts of the same or similar organisms. We illustrate the functionalities of our framework on a model organism. CONCLUSIONS: The proposed tool may be used also on other organisms and genomes. FEDRO is publicly available at http://math.unipa.it/rombo/FEDRO .


Assuntos
Fases de Leitura Aberta/genética , Oryza/genética , Edição de RNA/genética , Software , Sequência de Bases , DNA Mitocondrial/genética , Genoma Mitocondrial
18.
Proc Natl Acad Sci U S A ; 113(4): 996-1001, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26755590

RESUMO

Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP.


Assuntos
Dictyostelium/metabolismo , Metabolismo Energético , Polifosfatos/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia
19.
Mol Microbiol ; 106(2): 319-333, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28792096

RESUMO

Inositol pyrophosphates are novel signaling molecules possessing high-energy pyrophosphate bonds and involved in a number of biological functions. Here, we report the correct identification and characterization of the kinases involved in the inositol pyrophosphate biosynthetic pathway in Trypanosoma brucei: inositol polyphosphate multikinase (TbIPMK), inositol pentakisphosphate 2-kinase (TbIP5K) and inositol hexakisphosphate kinase (TbIP6K). TbIP5K and TbIP6K were not identifiable by sequence alone and their activities were validated by enzymatic assays with the recombinant proteins or by their complementation of yeast mutants. We also analyzed T. brucei extracts for the presence of inositol phosphates using polyacrylamide gel electrophoresis and high-performance liquid chromatography. Interestingly, we could detect inositol phosphate (IP), inositol 4,5-bisphosphate (IP2 ), inositol 1,4,5-trisphosphate (IP3 ), and inositol hexakisphosphate (IP6 ) in T. brucei different stages. Bloodstream forms unable to produce inositol pyrophosphates, due to downregulation of TbIPMK expression by conditional knockout, have reduced levels of polyphosphate and altered acidocalcisomes. Our study links the inositol pyrophosphate pathway to the synthesis of polyphosphate in acidocalcisomes, and may lead to better understanding of these organisms and provide new targets for drug discovery.


Assuntos
Fosfatos de Inositol/biossíntese , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Animais , Vias Biossintéticas , Metabolismo dos Carboidratos , Difosfatos/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ácido Fítico , Polifosfatos/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Trypanosoma brucei brucei/metabolismo
20.
Plant Cell ; 27(4): 1082-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25901085

RESUMO

Diphosphorylated inositol polyphosphates, also referred to as inositol pyrophosphates, are important signaling molecules that regulate critical cellular activities in many eukaryotic organisms, such as membrane trafficking, telomere maintenance, ribosome biogenesis, and apoptosis. In mammals and fungi, two distinct classes of inositol phosphate kinases mediate biosynthesis of inositol pyrophosphates: Kcs1/IP6K- and Vip1/PPIP5K-like proteins. Here, we report that PPIP5K homologs are widely distributed in plants and that Arabidopsis thaliana VIH1 and VIH2 are functional PPIP5K enzymes. We show a specific induction of inositol pyrophosphate InsP8 by jasmonate and demonstrate that steady state and jasmonate-induced pools of InsP8 in Arabidopsis seedlings depend on VIH2. We identify a role of VIH2 in regulating jasmonate perception and plant defenses against herbivorous insects and necrotrophic fungi. In silico docking experiments and radioligand binding-based reconstitution assays show high-affinity binding of inositol pyrophosphates to the F-box protein COI1-JAZ jasmonate coreceptor complex and suggest that coincidence detection of jasmonate and InsP8 by COI1-JAZ is a critical component in jasmonate-regulated defenses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Fosfatos de Inositol/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA