Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 568(7750): 108-111, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918404

RESUMO

Ethane is the second most abundant component of natural gas in addition to methane, and-similar to methane-is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps1-3, and through ethane-dependent sulfate reduction in slurries4-7. Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown8. Here we describe ethane-oxidizing archaea that were obtained by specific enrichment over ten years, and analyse these archaea using phylogeny-based fluorescence analyses, proteogenomics and metabolite studies. The co-culture, which oxidized ethane completely while reducing sulfate to sulfide, was dominated by an archaeon that we name 'Candidatus Argoarchaeum ethanivorans'; other members were sulfate-reducing Deltaproteobacteria. The genome of Ca. Argoarchaeum contains all of the genes that are necessary for a functional methyl-coenzyme M reductase, and all subunits were detected in protein extracts. Accordingly, ethyl-coenzyme M (ethyl-CoM) was identified as an intermediate by liquid chromatography-tandem mass spectrometry. This indicated that Ca. Argoarchaeum initiates ethane oxidation by ethyl-CoM formation, analogous to the recently described butane activation by 'Candidatus Syntrophoarchaeum'9. Proteogenomics further suggests that oxidation of intermediary acetyl-CoA to CO2 occurs through the oxidative Wood-Ljungdahl pathway. The identification of an archaeon that uses ethane (C2H6) fills a gap in our knowledge of microorganisms that specifically oxidize members of the homologous alkane series (CnH2n+2) without oxygen. Detection of phylogenetic and functional gene markers related to those of Ca. Argoarchaeum at deep-sea gas seeps10-12 suggests that archaea that are able to oxidize ethane through ethyl-CoM are widespread members of the local communities fostered by venting gaseous alkanes around these seeps.


Assuntos
Organismos Aquáticos/metabolismo , Archaea/metabolismo , Etano/metabolismo , Anaerobiose , Archaea/classificação , Archaea/enzimologia , Archaea/genética , Deltaproteobacteria/metabolismo , Etano/química , Gases/química , Gases/metabolismo , Golfo do México , Metano/biossíntese , Oxirredução , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Sulfetos/metabolismo
2.
Genome Med ; 13(1): 105, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158092

RESUMO

BACKGROUND: The microbiome has emerged as an environmental factor contributing to obesity and type 2 diabetes (T2D). Increasing evidence suggests links between circulating bacterial components (i.e., bacterial DNA), cardiometabolic disease, and blunted response to metabolic interventions. In this aspect, thorough next-generation sequencing-based and contaminant-aware approaches are lacking. To address this, we tested whether bacterial DNA could be amplified in the blood of subjects with obesity and high metabolic risk under strict experimental and analytical control and whether a putative bacterial signature is related to metabolic improvement after bariatric surgery. METHODS: Subjects undergoing bariatric surgery were recruited into sex- and BMI-matched subgroups with (n = 24) or without T2D (n = 24). Bacterial DNA in the blood was quantified and prokaryotic 16S rRNA gene amplicons were sequenced. A contaminant-aware approach was applied to derive a compositional microbial signature from bacterial sequences in all subjects at baseline and at 3 and 12 months after surgery. We modeled associations between bacterial load and composition with host metabolic and anthropometric markers. We further tested whether compositional shifts were related to weight loss response and T2D remission. Lastly, bacteria were visualized in blood samples using catalyzed reporter deposition (CARD)-fluorescence in situ hybridization (FISH). RESULTS: The contaminant-aware blood bacterial signature was associated with metabolic health. Based on bacterial phyla and genera detected in the blood samples, a metabolic syndrome classification index score was derived and shown to robustly classify subjects along their actual clinical group. T2D was characterized by decreased bacterial richness and loss of genera associated with improved metabolic health. Weight loss and metabolic improvement following bariatric surgery were associated with an early and stable increase of these genera in parallel with improvements in key cardiometabolic risk parameters. CARD-FISH allowed the detection of living bacteria in blood samples in obesity. CONCLUSIONS: We show that the circulating bacterial signature reflects metabolic disease and its improvement after bariatric surgery. Our work provides contaminant-aware evidence for the presence of living bacteria in the blood and suggests a putative crosstalk between components of the blood and metabolism in metabolic health regulation.


Assuntos
Bacteriemia/sangue , Biomarcadores , Doenças Metabólicas/sangue , Doenças Metabólicas/diagnóstico , Adulto , Cirurgia Bariátrica/efeitos adversos , Cirurgia Bariátrica/métodos , Peso Corporal , Biologia Computacional/métodos , Contaminação por DNA , DNA Bacteriano , Diabetes Mellitus Tipo 2/sangue , Feminino , Glucose/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Masculino , Doenças Metabólicas/etiologia , Metagenoma , Metagenômica/métodos , Microbiota , Pessoa de Meia-Idade , Período Pós-Operatório , RNA Ribossômico 16S , Curva ROC
3.
Adv Biosyst ; 3(1): e1800250, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32627346

RESUMO

Helium-ion microscopy (HIM) has so far rarely been employed to image microbial interactions. Here, the visualization of the life-cycle of the bacterial predator Bdellovibrio bacteriovorus HD100 with Escherichia coli and Pseudomonas putida, respectively, as prey is presented. The predator is brought in contact with prey and samples are taken at selected times. The system is monitored by phase-contrast microscopy and HIM. For HIM imaging, a sample preparation protocol is established that preserves the structure of Bdellovibrio, prey, and bdelloplasts. The micrographs show the attachment of the predator to its prey, the evolution of bdelloplasts, their lysis, and the release of predator progeny. The combination of HIM with two more approaches allows for investigating predator-prey interactions from different angles: First, phase-contrast micrographs provide quantitative information for the numbers of predator, prey, and bdelloplasts. Second, a numerical model solving the retarded differential equations that describe the system's time-evolution is developed and fits the experimentally determined cell numbers. In conclusion, the high resolution, the large depth of focus, and surface sensitivity of HIM hold promise to expand future studies on so far neglected ecological interactions within the microbial food web, in particular in samples with pronounced topography such as bacterial biofilms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA