RESUMO
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of cancers and inflammation-related diseases. This phenomenon becomes common in persons aged ≥80 years, in whom the implications of CHIP are not well defined. We performed a mutational screening in 1794 persons aged ≥80 years and investigated the relationships between CHIP and associated pathologies. Mutations were observed in one-third of persons aged ≥80 years and were associated with reduced survival. Mutations in JAK2 and splicing genes, multiple mutations (DNMT3A, TET2, and ASXL1 with additional genetic lesions), and variant allele frequency ≥0.096 had positive predictive value for myeloid neoplasms. Combining mutation profiles with abnormalities in red blood cell indices improved the ability of myeloid neoplasm prediction. On this basis, we defined a predictive model that identifies 3 risk groups with different probabilities of developing myeloid neoplasms. Mutations in DNMT3A, TET2, ASXL1, or JAK2 were associated with coronary heart disease and rheumatoid arthritis. Cytopenia was common in persons aged ≥80 years, with the underlying cause remaining unexplained in 30% of cases. Among individuals with unexplained cytopenia, the presence of highly specific mutation patterns was associated with myelodysplastic-like phenotype and a probability of survival comparable to that of myeloid neoplasms. Accordingly, 7.5% of subjects aged ≥80 years with cytopenia had presumptive evidence of myeloid neoplasm. In summary, specific mutational patterns define different risk of developing myeloid neoplasms vs inflammatory-associated diseases in persons aged ≥80 years. In individuals with unexplained cytopenia, mutational status may identify those subjects with presumptive evidence of myeloid neoplasms.
Assuntos
Hematopoiese Clonal , Mutação , Fatores Etários , Idoso de 80 Anos ou mais , Artrite Reumatoide/etiologia , Artrite Reumatoide/genética , Doença das Coronárias/etiologia , Doença das Coronárias/genética , Feminino , Humanos , Leucemia Mieloide/etiologia , Leucemia Mieloide/genética , Masculino , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/genéticaRESUMO
Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous RAD21 germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients. While RAD21 p.P298S/A did not disrupt the formation of the cohesin complex, it altered RAD21 gene expression, DNA damage response and primary patient fibroblasts showed increased G2/M arrest after irradiation and Mitomycin-C treatment. Subsequent single-cell RNA-sequencing analysis of healthy human bone marrow confirmed the upregulation of distinct cohesin gene patterns during hematopoiesis, highlighting the importance of RAD21 expression within proliferating B- and T-cells. Our clinical and functional data therefore suggest that RAD21 germline variants can predispose to childhood lymphoblastic leukemia or lymphoma without displaying a CdLS phenotype.
Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Criança , Proteínas de Ligação a DNA/genética , Síndrome de Cornélia de Lange/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Células Germinativas/metabolismo , Humanos , Linfoma/genética , Mutação , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMO
The transcription factor RUNX1, a pivotal regulator of HSCs and haematopoiesis, is a frequent target of chromosomal translocations, point mutations or altered gene/protein dosage. These modifications lead or contribute to the development of myelodysplasia, leukaemia or platelet disorders. A better understanding of how regulatory elements contribute to fine-tune the RUNX1 expression in haematopoietic tissues could improve our knowledge of the mechanisms responsible for normal haematopoiesis and malignancy insurgence. The cohesin RAD21 was reported to be a regulator of RUNX1 expression in the human myeloid HL60 cell line and during primitive haematopoiesis in zebrafish. In our study, we demonstrate that another cohesin, NIPBL, exerts positive regulation of RUNX1 in three different contexts in which RUNX1 displays important functions: in megakaryocytes derived from healthy donors, in bone marrow samples obtained from adult patients with acute myeloid leukaemia and during zebrafish haematopoiesis. In this model, we demonstrate that alterations in the zebrafish orthologue nipblb reduce runx1 expression with consequent defects in its erythroid and myeloid targets such as gata1a and spi1b in an opposite way to rad21. Thus, also in the absence of RUNX1 translocation or mutations, additional factors such as defects in the expression of NIPBL might induce haematological diseases.
Assuntos
Proteínas de Ciclo Celular/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Hematopoese/genética , Proteínas de Peixe-Zebra/genética , Adulto , Idoso , Animais , Células da Medula Óssea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Criança , Estudos de Coortes , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo/genética , Humanos , Leucemia Mieloide Aguda/genética , Megacariócitos/metabolismo , Pessoa de Meia-Idade , Doadores de Tecidos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Nucleares/genética , Adulto , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Hematopoese , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Nucleofosmina , Fenótipo , Via de Sinalização Wnt , Peixe-Zebra , CoesinasRESUMO
Children with Down syndrome have an augmented risk for B-cell acute lymphoblastic leukemia (DS-ALL), which is associated with lower survival than in non-DS-ALL. It is known that cytogenetic abnormalities common in childhood ALL are less frequent in DS-ALL, while other genetic aberrancies (ie, CRLF2 overexpression and IKZF1 deletions) are increased. A possible cause for the lower survival of DS-ALL that we herewith evaluated for the first time was the incidence and prognostic value of the Philadelphia-like (Ph-like) profile and the IKZF1plus pattern. These features have been associated with poor outcome in non-DS ALL and therefore introduced in current therapeutic protocols. Forty-six out of 70 DS-ALL patients treated in Italy from 2000 to 2014 displayed Ph-like signature, mostly characterized by CRLF2 (n = 33) and IKZF1 (n = 16) alterations; only 2 cases were positive for ABL-class or PAX5-fusion genes. Moreover, in an Italian and German joint cohort of 134 DS-ALL patients, we observed 18% patients positive for IKZF1plus feature. Ph-like signature and IKZF1 deletion were associated with poor outcome (cumulative incidence of relapse: 27.7 ± 6.8% versus 13 ± 7%; P = 0.04 and 35.2 ± 8.6% versus 17 ± 3.9%; P = 0.007, respectively), which further worsens when IKZF1 deletion was co-occurring with P2RY8::CRLF2, qualifying for the IKZF1plus definition (13/15 patients had an event of relapse or treatment-related death). Notably, ex vivo drug screening revealed sensitivity of IKZF1plus blasts for drugs active against Ph-like ALL such as Birinapant and histone deacetylase inhibitors. We provided data in a large setting of a rare condition (DS-ALL) supporting that these patients, not associated with other high-risk features, need tailored therapeutic strategies.
RESUMO
BACKGROUND: Despite intensive risk-based treatment protocols, 15% of paediatric patients with B-Cell Precursor Acute Lymphoblastic Leukaemia (BCP-ALL) experience relapse. There is urgent need of novel strategies to target poor prognosis subgroups, like PAX5 translocated. METHODS: We considered 289 childhood BCP-ALL cases consecutively enrolled in Italy in the AIEOP-BFM ALL2000/R2006 protocols and we performed extensive molecular profiling, integrating gene expression, copy number analyses and fusion genes discovery by target-capture NGS. We developed preclinical strategies to target PAX5 fusion genes. FINDINGS: We identified 135 cases without recurrent genetic rearrangements. Among them, 59 patients (43·7%) had a Ph-like signature; the remaining cases were identified as ERG-related (26%), High-Hyperdiploid-like (17%), ETV6::RUNX1-like (8·9%), MEF2D-rearranged (2·2%) or KMT2A-like (1·5%). A poor prognosis was associated with the Ph-like signature, independently from other high-risk features. Interestingly, PAX5 was altered in 54·4% of Ph-like compared to 16·2% of non-Ph-like cases, with 7 patients carrying PAX5 fusions (PAX5t), involving either novel (ALDH18A1, IKZF1, CDH13) or known (FBRSL1, AUTS2, DACH2) partner genes. PAX5t cases have a specific driver activity signature, extending to multiple pathways including LCK hyperactivation. Among FDA-approved drugs and inhibitors, we selected Dasatinib, Bosutinib and Foretinib, in addition to Nintedanib, known to be LCK ligands. We demonstrated the efficacy of the LCK-inhibitor BIBF1120/Nintedanib, as single agent or in combination with conventional chemotherapy, both ex vivo and in patient-derived xenograft model, showing a synergistic effect with dexamethasone. INTERPRETATION: This study provides new insights in high-risk Ph-like leukaemia and identifies a potential therapy for targeting PAX5-fusion poor risk group. FUNDING: Ricerca Finalizzata-Giovani Ricercatori (Italian Ministry of Health), AIRC, Transcall, Fondazione Cariparo.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Subunidade alfa 2 de Fator de Ligação ao Core , Dasatinibe , Dexametasona , Humanos , Indóis , Recidiva Local de Neoplasia , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMO
Myelodysplastic syndromes (MDS) are a clonal disease arising from hematopoietic stem cells, that are characterized by ineffective hematopoiesis (leading to peripheral blood cytopenia) and by an increased risk of evolution into acute myeloid leukemia. MDS are driven by a complex combination of genetic mutations that results in heterogeneous clinical phenotype and outcome. Genetic studies have enabled the identification of a set of recurrently mutated genes which are central to the pathogenesis of MDS and can be organized into a limited number of cellular pathways, including RNA splicing (SF3B1, SRSF2, ZRSR2, U2AF1 genes), DNA methylation (TET2, DNMT3A, IDH1/2), transcription regulation (RUNX1), signal transduction (CBL, RAS), DNA repair (TP53), chromatin modification (ASXL1, EZH2), and cohesin complex (STAG2). Few genes are consistently mutated in >10% of patients, whereas a long tail of 40-50 genes are mutated in <5% of cases. At diagnosis, the majority of MDS patients have 2-4 driver mutations and hundreds of background mutations. Reliable genotype/phenotype relationships were described in MDS: SF3B1 mutations are associated with the presence of ring sideroblasts and more recent studies indicate that other splicing mutations (SRSF2, U2AF1) may identify distinct disease categories with specific hematological features. Moreover, gene mutations have been shown to influence the probability of survival and risk of disease progression and mutational status may add significant information to currently available prognostic tools. For instance, SF3B1 mutations are predictors of favourable prognosis, while driver mutations of other genes (such as ASXL1, SRSF2, RUNX1, TP53) are associated with a reduced probability of survival and increased risk of disease progression. In this article, we review the most recent advances in our understanding of the genetic basis of myelodysplastic syndromes and discuss its clinical relevance.
Assuntos
Síndromes Mielodisplásicas/genética , Predisposição Genética para Doença , Humanos , Mutação , Síndromes Mielodisplásicas/classificação , Síndromes Mielodisplásicas/patologia , PrognósticoRESUMO
PURPOSE: Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. RESULTS: We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia-like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. CONCLUSION: Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis.
Assuntos
Genômica/métodos , Síndromes Mielodisplásicas/classificação , Feminino , Humanos , Masculino , Síndromes Mielodisplásicas/genética , Prognóstico , Estudos RetrospectivosRESUMO
Cornelia de Lange syndrome (CdLS) is a rare autosomal-dominant genetic disorder characterised by prenatal and postnatal growth and mental retardation, facial dysmorphism and upper limb abnormalities. Germline mutations of cohesin complex genes SMC1A, SMC3, RAD21 or their regulators NIPBL and HDAC8 have been identified in CdLS as well as somatic mutations in myeloid disorders. We describe the first case of a paediatric patient with CdLS with B-cell precursor Acute Lymphoblastic Leukaemia (ALL). The patient did not show any unusual cytogenetic abnormality, and he was enrolled into the high risk arm of AIEOP-BFM ALL2009 protocol because of slow early response, but 3 years after discontinuation, he experienced an ALL relapse. We identified a heterozygous mutation in exon 46 of NIPBL, causing frameshift and a premature stop codon (RNA-Targeted Next generation Sequencing Analysis). The analysis of the family indicated a de novo origin of this previously not reported deleterious variant. As for somatic cohesin mutations in acute myeloid leukaemia, also this ALL case was not affected by aneuploidy, thus suggesting a major impact of the non-canonical role of NIPBL in gene regulation. A potential biological role of NIPBL in leukaemia has still to be dissected.
Assuntos
Síndrome de Cornélia de Lange/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas/genética , Proteínas de Ciclo Celular , Pré-Escolar , Análise Mutacional de DNA , Síndrome de Cornélia de Lange/diagnóstico , Feminino , Predisposição Genética para Doença , Hereditariedade , Humanos , Masculino , Linhagem , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , RecidivaRESUMO
Acute lymphoblastic leukemia (ALL) is the most frequent pediatric cancer. Fusion genes are hallmarks of ALL, and they are used as biomarkers for risk stratification as well as targets for precision medicine. Hence, clinical diagnostics pursues broad and comprehensive strategies for accurate discovery of fusion genes. Currently, the gold standard methodologies for fusion gene detection are fluorescence in situ hybridization and polymerase chain reaction; these, however, lack sensitivity for the identification of new fusion genes and breakpoints. In this study, we implemented a simple operating procedure (OP) for detecting fusion genes. The OP employs RNA CaptureSeq, a versatile and effortless next-generation sequencing assay, and an in-house as well as a purpose-built bioinformatics pipeline for the subsequent data analysis. The OP was evaluated on a cohort of 89 B-cell precursor ALL (BCP-ALL) pediatric samples annotated as negative for fusion genes by the standard techniques. The OP confirmed 51 samples as negative for fusion genes, and, more importantly, it identified known (KMT2A rearrangements) as well as new fusion events (JAK2 rearrangements) in the remaining 38 investigated samples, of which 16 fusion genes had prognostic significance. Herein, we describe the OP and its deployment into routine ALL diagnostics, which will allow substantial improvements in both patient risk stratification and precision medicine.