Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Immunol ; 15(5): 439-448, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681565

RESUMO

Molecular mechanisms that maintain lineage integrity of helper T cells are largely unknown. Here we show histone deacetylases 1 and 2 (HDAC1 and HDAC2) as crucial regulators of this process. Loss of HDAC1 and HDAC2 during late T cell development led to the appearance of major histocompatibility complex (MHC) class II-selected CD4(+) helper T cells that expressed CD8-lineage genes such as Cd8a and Cd8b1. HDAC1 and HDAC2-deficient T helper type 0 (TH0) and TH1 cells further upregulated CD8-lineage genes and acquired a CD8(+) effector T cell program in a manner dependent on Runx-CBFß complexes, whereas TH2 cells repressed features of the CD8(+) lineage independently of HDAC1 and HDAC2. These results demonstrate that HDAC1 and HDAC2 maintain integrity of the CD4 lineage by repressing Runx-CBFß complexes that otherwise induce a CD8(+) effector T cell-like program in CD4(+) T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Células Th1/imunologia , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Citocinas/metabolismo , Citotoxicidade Imunológica/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica
2.
Nat Immunol ; 14(3): 281-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23334788

RESUMO

TCRαß thymocytes differentiate into either CD8αß(+) cytotoxic T lymphocytes or CD4(+) helper T cells. This functional dichotomy is controlled by key transcription factors, including the helper T cell master regulator ThPOK, which suppresses the cytolytic program in major histocompatibility complex (MHC) class II-restricted CD4(+) thymocytes. ThPOK continues to repress genes of the CD8 lineage in mature CD4(+) T cells, even as they differentiate into effector helper T cell subsets. Here we found that the helper T cell fate was not fixed and that mature, antigen-stimulated CD4(+) T cells terminated expression of the gene encoding ThPOK and reactivated genes of the CD8 lineage. This unexpected plasticity resulted in the post-thymic termination of the helper T cell program and the functional differentiation of distinct MHC class II-restricted CD4(+) cytotoxic T lymphocytes.


Assuntos
Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Citrobacter rodentium/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas de Homeodomínio/genética , Interleucina-7/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/metabolismo , Timócitos/metabolismo
3.
Cell ; 132(5): 794-806, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18329366

RESUMO

Certain autoimmune diseases result in abnormal bone homeostasis, but association of immunodeficiency with bone is poorly understood. Osteoclasts, which derive from bone marrow cells, are under the control of the immune system. Differentiation of osteoclasts is mainly regulated by signaling pathways activated by RANK and immune receptors linked to ITAM-harboring adaptors. However, it is unclear how the two signals merge to cooperate in osteoclast differentiation. Here we report that mice lacking the tyrosine kinases Btk and Tec show severe osteopetrosis caused by a defect in bone resorption. RANK and ITAM signaling results in formation of a Btk(Tec)/BLNK(SLP-76)-containing complex and PLCgamma-mediated activation of an essential calcium signal. Furthermore, Tec kinase inhibition reduces osteoclastic bone resorption in models of osteoporosis and inflammation-induced bone destruction. Thus, this study reveals the importance of the osteoclastogenic signaling complex composed of tyrosine kinases, which may provide the molecular basis for a new therapeutic strategy.


Assuntos
Diferenciação Celular , Osteoclastos/citologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina Quinase da Agamaglobulinemia , Motivos de Aminoácidos , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Sinalização do Cálcio , Modelos Animais de Doenças , Feminino , Camundongos , Osteoclastos/metabolismo , Osteopetrose/tratamento farmacológico , Osteopetrose/genética , Osteopetrose/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Fosfolipase C gama/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Ligante RANK/metabolismo , Ligante RANK/farmacologia
4.
Nat Immunol ; 11(5): 442-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20383150

RESUMO

The CD4 versus CD8 lineage specification of thymocytes is linked to coreceptor expression. The transcription factor MAZR has been identified as an important regulator of Cd8 expression. Here we show that variegated CD8 expression by loss of Cd8 enhancers was reverted in MAZR-deficient mice, which confirms that MAZR negatively regulates the Cd8 loci during the transition to the double-positive (DP) stage. Moreover, loss of MAZR led to partial redirection of major histocompatibility complex (MHC) class I-restricted thymocytes into CD4(+) helper-like T cells, which correlated with derepression of Th-POK, a central transcription factor for helper-lineage development. MAZR bound the silencer of the gene encoding Th-POK, which indicated direct regulation of this locus by MAZR. Thus, MAZR is part of the transcription factor network that regulates the CD8 lineage differentiation of DP thymocytes.


Assuntos
Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Linhagem da Célula , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Animais , Transplante de Medula Óssea , Antígenos CD4/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Transdiferenciação Celular/genética , Transdiferenciação Celular/imunologia , Células Cultivadas , Redes Reguladoras de Genes , Antígenos H-2/genética , Antígenos H-2/metabolismo , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia , Quimera por Radiação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Elementos Silenciadores Transcricionais/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/imunologia
5.
J Hepatol ; 75(5): 1164-1176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242699

RESUMO

BACKGROUND & AIMS: 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS: NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS: NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS: NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY: Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Ácido Ursodesoxicólico/análogos & derivados , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/fisiopatologia , Fígado/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
6.
Cell Mol Life Sci ; 76(21): 4391-4404, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31065747

RESUMO

Invariant natural killer T (iNKT) cells represent a subgroup of innate-like T cells and play an important role in immune responses against certain pathogens. In addition, they have been linked to autoimmunity and antitumor immunity. iNKT cells consist of several subsets with distinct functions; however, the transcriptional networks controlling iNKT subset differentiation are still not fully characterized. Myc-associated zinc-finger-related factor (MAZR, also known as PATZ1) is an essential transcription factor for CD8+ lineage differentiation of conventional T cells. Here, we show that MAZR plays an important role in iNKT cells. T-cell lineage-specific deletion of MAZR resulted in an iNKT cell-intrinsic defect that led to an increase in iNKT2 cell numbers, concurrent with a reduction in iNKT1 and iNKT17 cells. Consistent with the alteration in the subset distribution, deletion of MAZR also resulted in an increase in the percentage of IL-4-producing cells. Moreover, MAZR-deficient iNKT cells displayed an enhanced expression of Erg2 and ThPOK, key factors for iNKT cell generation and subset differentiation, indicating that MAZR controls iNKT cell development through fine-tuning of their expression levels. Taken together, our study identified MAZR as an essential transcription factor regulating iNKT cell subset differentiation and effector function.


Assuntos
Diferenciação Celular/genética , Células T Matadoras Naturais/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas Repressoras/fisiologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Regulação da Expressão Gênica , Subpopulações de Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células T Matadoras Naturais/classificação , Fatores de Transcrição/fisiologia , Dedos de Zinco/fisiologia
7.
J Cell Biochem ; 119(11): 9055-9063, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076740

RESUMO

Oncostatin M (OSM) is a member of the interleukin (IL)-6 family cytokines. We previously demonstrated that OSM induces blood-brain barrier (BBB) impairment. However, functional characterization of IL-6 family cytokines in BBB regulation and the cytokine-related intracellular signaling pathway remain unclear. In this study, we demonstrate that among IL-6 family cytokines, including IL-6 and leukemia inhibitory factor (LIF), OSM is the most potent molecule for inducing BBB dysfunction via prolonged activation of signal transducer and activator of transcription (STAT) 3 following Janus-activated kinase (JAK) activation. OSM but not IL-6 and LIF (100 ng/mL for 24 hours) markedly produced increased sodium fluorescein permeability and decreased transendothelial electrical resistance in rat brain endothelial cell (RBEC) monolayers. This OSM-induced BBB dysfunction was accompanied by decreased levels of claudin-5 expression in RBECs, which were ameliorated by JAK inhibitor. We examined the time-course of STAT3 phosphorylation in RBECs treated with OSM, IL-6, and LIF. OSM upregulated STAT3 phosphorylation levels during a 24 hours period with a peak at 10 minutes. While IL-6 and LIF transiently increased phosphorylated STAT3 at 10 minutes after addition, this phosphorylation decreased during the period from 1 to 24 hours after addition. These findings suggest that OSM-induced sustained increases in STAT3 phosphorylation levels largely contribute to BBB impairment. Thus, elevated OSM levels and activation of brain endothelial JAK/STAT3 signaling pathway under pathological conditions should be considered as a possible hallmark for induction and development of BBB impairment.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Oncostatina M/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Interleucina-6/farmacologia , Fator Inibidor de Leucemia/farmacologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
8.
PLoS Genet ; 11(11): e1005645, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26544571

RESUMO

Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Reparo do DNA , Ativação Linfocitária/fisiologia , Proteínas Nucleares/fisiologia , Linfócitos T/imunologia , Fatores de Transcrição/fisiologia , Animais , Colite/imunologia , Dano ao DNA , Proteínas de Ligação a DNA , Imunofenotipagem , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética , Baço/citologia , Baço/metabolismo
9.
J Immunol ; 195(6): 2879-87, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26254341

RESUMO

Th-inducing Pox virus and zinc finger/Krüppel-like factor (ThPOK) is a key commitment factor for CD4(+) lineage T cells and is essential for the maintenance of CD4 lineage integrity; thus, the expression of ThPOK has to be tightly controlled. In this article, we demonstrate that Myc-associated zinc finger-related factor (MAZR) and Runt-related transcription factor 1 (Runx1) together repressed ThPOK in preselection double-positive thymocytes, whereas MAZR acted in synergy with Runx3 in the repression of ThPOK in CD8(+) T cells. Furthermore, MAZR-Runx1 and MAZR-Runx3 double-mutant mice showed enhanced derepression of Cd4 in double-negative thymocytes and in CD8(+) T cells in comparison with Runx1 or Runx3 single-deficient mice, respectively, indicating that MAZR modulates Cd4 silencing. Thus, our data demonstrate developmental stage-specific synergistic activities between MAZR and Runx/core-binding factor ß (CBFß) complexes. Finally, retroviral Cre-mediated conditional deletion of MAZR in peripheral CD8(+) T cells led to the derepression of ThPOK, thus showing that MAZR is also part of the molecular machinery that maintains a repressed state of ThPOK in CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Subunidade alfa 2 de Fator de Ligação ao Core/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Repressoras/imunologia , Fatores de Transcrição/imunologia , Animais , Antígenos CD4/biossíntese , Antígenos CD4/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Linhagem Celular , Linhagem da Célula/imunologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Fatores de Ligação ao Core/imunologia , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética , Timócitos/citologia , Timócitos/imunologia
10.
Proc Natl Acad Sci U S A ; 108(45): 18330-5, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22025728

RESUMO

Cd8a and Cd8b1 coreceptor gene (Cd8) expression is tightly controlled during T-cell development by the activity of five Cd8 enhancers (E8(I)-E8(V)). Here we demonstrate a unique transcriptional program regulating CD8 expression during CD8(+) effector T-cell differentiation. The Cd8 enhancer E8(I) and Runx/core-binding factor-ß (CBFß) complexes were required for the establishment of this regulatory circuit, because E8(I)-, Runx3-, or CBFß-deficient CD8(+) T cells down-regulated CD8α expression during activation. This finding correlated with enhanced repressive histone marks at the Cd8a promoter in the absence of E8(I), and the down-regulation of CD8α expression could be blocked by treating E8(I)-, Runx3-, or CBFß-deficient CD8(+) T cells with the histone deacetylase inhibitor trichostatin A. Moreover, Runx/CBFß complexes bound the Cd8ab gene cluster in activated CD8(+) T cells, suggesting direct control of the Cd8a locus. However, CD8(+) effector T cells maintained high levels of CD8α when CBFß was conditionally deleted after activation. Thus, our data suggest an E8(I)- and Runx3/CBFß-dependent epigenetic programming of the Cd8a locus during T-cell activation, leading to Runx/CBFß complex-independent maintenance of CD8α expression in effector T cells.


Assuntos
Antígenos CD8/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Animais , Antígenos CD8/genética , Imunoprecipitação da Cromatina , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Expressão Gênica , Histonas/metabolismo , Ativação Linfocitária , Camundongos , Regiões Promotoras Genéticas
11.
Biochem Biophys Res Commun ; 433(4): 586-90, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23523792

RESUMO

Blood-brain barrier (BBB) disruption occurs frequently in CNS diseases and injuries. Few drugs have been developed as therapeutic candidates for facilitating BBB functions. Here, we examined whether metformin up-regulates BBB functions using rat brain microvascular endothelial cells (RBECs). Metformin, concentration- and time-dependently increased transendothelial electrical resistance of RBEC monolayers, and decreased RBEC permeability to sodium fluorescein and Evans blue albumin. These effects of metformin were blocked by compound C, an inhibitor of AMP-activated protein kinase (AMPK). AMPK stimulation with an AMPK activator, AICAR, enhanced BBB functions. These findings indicate that metformin induces up-regulation of BBB functions via AMPK activation.


Assuntos
Adenilato Quinase/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Metformina/farmacologia , Regulação para Cima , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/enzimologia , Permeabilidade da Membrana Celular , Células Cultivadas , AMP Cíclico/análise , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ativação Enzimática , Fluoresceína/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Fatores de Tempo
12.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37703004

RESUMO

T follicular helper (Tfh) cells are essential for the development of germinal center B cells and high-affinity antibody-producing B cells in humans and mice. Here, we identify the guanine nucleotide exchange factor (GEF) Rin-like (Rinl) as a negative regulator of Tfh generation. Loss of Rinl leads to an increase of Tfh in aging, upon in vivo immunization and acute LCMV Armstrong infection in mice, and in human CD4+ T cell in vitro cultures. Mechanistically, adoptive transfer experiments using WT and Rinl-KO naïve CD4+ T cells unraveled T cell-intrinsic GEF-dependent functions of Rinl. Further, Rinl regulates CD28 internalization and signaling, thereby shaping CD4+ T cell activation and differentiation. Thus, our results identify the GEF Rinl as a negative regulator of global Tfh differentiation in an immunological context and species-independent manner, and furthermore, connect Rinl with CD28 internalization and signaling pathways in CD4+ T cells, demonstrating for the first time the importance of endocytic processes for Tfh differentiation.


Assuntos
Antígenos CD28 , Fatores de Troca do Nucleotídeo Guanina , Humanos , Animais , Camundongos , Transdução de Sinais , Diferenciação Celular , Transferência Adotiva
13.
Proc Natl Acad Sci U S A ; 105(46): 17919-24, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19004789

RESUMO

Transcriptional pathways controlling the development of CD44(hi) memory phenotype (MP) T cells with "innate-like" functions are not well understood. Here we show that the BTB (bric-a-brac, tramtrack, broad complex) domain-containing protein promyelocytic leukemia zinc finger (PLZF) is expressed in CD44(hi), but not in CD44(lo), CD4(+) T cells. Transgenic expression of PLZF during T cell development and in CD4(+) and CD8(+) T cells induced a T cell intrinsic program leading to an increase in peripheral CD44(hi) MP CD4(+) and CD8(+) T cells and a corresponding decrease of naïve CD44(lo) T cells. The MP CD4(+) and CD8(+) T cells produced IFNgamma upon PMA/ionomycin stimulation, thus showing innate-like function. Changes in the naïve versus memory-like subset distribution were already evident in single-positive thymocytes, indicating PLZF-induced T cell developmental alterations. In addition, CD1d-restricted natural killer T cells in PLZF transgenic mice showed impaired development and were severely reduced in the periphery. Finally, after anti-CD3/CD28 stimulation, CD4(+) transgenic T cells showed reduced IL-2 and IFNgamma production but increased IL-4 secretion as a result of enhanced IL-4 production of the CD44(hi)CD62L(+) subset. Our data indicate that PLZF is a novel regulator of the development of CD44(hi) MP T cells with a characteristic partial innate-like phenotype.


Assuntos
Receptores de Hialuronatos/imunologia , Memória Imunológica/imunologia , Fatores de Transcrição Kruppel-Like/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Selectina L/metabolismo , Camundongos , Camundongos Transgênicos , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/imunologia , Fenótipo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Timo/citologia , Timo/imunologia
14.
Proc Natl Acad Sci U S A ; 105(51): 20446-51, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19074283

RESUMO

A conundrum of innate antiviral immunity is how nucleic acid-sensing Toll-like receptors (TLRs) and RIG-I/MDA5 receptors cooperate during virus infection. The conventional wisdom has been that the activation of these receptor pathways evokes type I IFN (IFN) responses. Here, we provide evidence for a critical role of a Toll-like receptor 3 (TLR3)-dependent type II IFN signaling pathway in antiviral innate immune response against Coxsackievirus group B serotype 3 (CVB3), a member of the positive-stranded RNA virus family picornaviridae and most prevalent virus associated with chronic dilated cardiomyopathy. TLR3-deficient mice show a vulnerability to CVB3, accompanied by acute myocarditis, whereas transgenic expression of TLR3 endows even type I IFN signal-deficient mice resistance to CVB3 and other types of viruses, provided that type II IFN signaling remains intact. Taken together, our results indicate a critical cooperation of the RIG-I/MDA5-type I IFN and the TLR3-type II IFN signaling axes for efficient innate antiviral immune responses.


Assuntos
Imunidade Inata , Interferon gama/imunologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/imunologia , Viroses/imunologia , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Enterovirus/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon , Interferon gama/metabolismo , Camundongos , Camundongos Knockout , Miocardite/imunologia , Miocardite/virologia , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/metabolismo
15.
Front Immunol ; 12: 535039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815354

RESUMO

The BTB zinc finger transcription factor MAZR (also known as PATZ1) controls, partially in synergy with the transcription factor Runx3, the development of CD8 lineage T cells. Here we explored the role of MAZR as well as combined activities of MAZR/Runx3 during cytotoxic T lymphocyte (CTL) and memory CD8+ T cell differentiation. In contrast to the essential role of Runx3 for CTL effector function, the deletion of MAZR had a mild effect on the generation of CTLs in vitro. However, a transcriptome analysis demonstrated that the combined deletion of MAZR and Runx3 resulted in much more widespread downregulation of CTL signature genes compared to single Runx3 deletion, indicating that MAZR partially compensates for loss of Runx3 in CTLs. Moreover, in line with the findings made in vitro, the analysis of CTL responses to LCMV infection revealed that MAZR and Runx3 cooperatively regulate the expression of CD8α, Granzyme B and perforin in vivo. Interestingly, while memory T cell differentiation is severely impaired in Runx3-deficient mice, the deletion of MAZR leads to an enlargement of the long-lived memory subset and also partially restored the differentiation defect caused by loss of Runx3. This indicates distinct functions of MAZR and Runx3 in the generation of memory T cell subsets, which is in contrast to their cooperative roles in CTLs. Together, our study demonstrates complex interplay between MAZR and Runx3 during CTL and memory T cell differentiation, and provides further insight into the molecular mechanisms underlying the establishment of CTL and memory T cell pools.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Memória Imunológica/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Repressoras/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/virologia
16.
Front Immunol ; 12: 750466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003062

RESUMO

T helper (Th) 17 cells are not only key in controlling infections mediated by extracellular bacteria and fungi but are also triggering autoimmune responses. Th17 cells comprise heterogeneous subsets, some with pathogenic functions. They can cease to secrete their hallmark cytokine IL-17A and even convert to other T helper lineages, a process known as transdifferentiation relying on plasticity. Both pathogenicity and plasticity are tightly linked to IL-23 signaling. Here, we show that the protein tyrosine kinase Tec is highly induced in Th17 cells. Th17 differentiation was enhanced at low interleukin-6 (IL-6) concentrations in absence of Tec, which correlates with increased STAT3 phosphorylation and higher Il23r expression. Therefore, we uncovered a function for Tec in the IL-6 sensing via STAT3 by CD4+ T cells, defining Tec as a fine-tuning negative regulator of Th17 differentiation. Subsequently, by using the IL-17A fate mapping mouse combined with in vivo adoptive transfer models, we demonstrated that Tec not only restrained effector Th17 differentiation but also pathogenicity and plasticity in a T-cell intrinsic manner. Our data further suggest that Tec regulates inflammatory Th17-driven immune responses directly impacting disease severity in a T-cell-driven colitis model. Notably, consistent with the in vitro findings, elevated levels of the IL-23 receptor (IL-23R) were observed on intestinal pre- and postconversion Th17 cells isolated from diseased Tec-/- mice subjected to adoptive transfer colitis, highlighting a fundamental role of Tec in restraining IL-23R expression, likely via the IL-6-STAT3 signaling axis. Taken together, these findings identify Tec as a negative regulator of Th17 differentiation, pathogenicity, and plasticity, contributing to the mechanisms which help T cells to orchestrate optimal immune protection and to restrain immunopathology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Intestinos/imunologia , Proteínas Tirosina Quinases/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/imunologia , Inflamação/patologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Tirosina Quinases/metabolismo , Células Th17/patologia
17.
JCI Insight ; 5(4)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102981

RESUMO

Some effector CD4+ T cell subsets display cytotoxic activity, thus breaking the functional dichotomy of CD4+ helper and CD8+ cytotoxic T lymphocytes. However, molecular mechanisms regulating CD4+ cytotoxic T lymphocyte (CD4+ CTL) differentiation are poorly understood. Here we show that levels of histone deacetylases 1 and 2 (HDAC1-HDAC2) are key determinants of CD4+ CTL differentiation. Deletions of both Hdac1 and 1 Hdac2 alleles (HDAC1cKO-HDAC2HET) in CD4+ T cells induced a T helper cytotoxic program that was controlled by IFN-γ-JAK1/2-STAT1 signaling. In vitro, activated HDAC1cKO-HDAC2HET CD4+ T cells acquired cytolytic activity and displayed enrichment of gene signatures characteristic of effector CD8+ T cells and human CD4+ CTLs. In vivo, murine cytomegalovirus-infected HDAC1cKO-HDAC2HET mice displayed a stronger induction of CD4+ CTL features compared with infected WT mice. Finally, murine and human CD4+ T cells treated with short-chain fatty acids, which are commensal-produced metabolites acting as HDAC inhibitors, upregulated CTL genes. Our data demonstrate that HDAC1-HDAC2 restrain CD4+ CTL differentiation. Thus, HDAC1-HDAC2 might be targets for the therapeutic induction of CD4+ CTLs.


Assuntos
Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/fisiologia , Histona Desacetilase 1/fisiologia , Histona Desacetilase 2/fisiologia , Linfócitos T Citotóxicos/fisiologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Ácidos Graxos/farmacologia , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
18.
Eur J Immunol ; 38(12): 3530-42, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19009524

RESUMO

Vav1 and the Tec family kinase Itk act in similar T-cell activation pathways. Both molecules interact with members of the Cbl family of E3 ubiquitin ligases, and signaling defects in Vav1(-/-) T cells are rescued upon deletion of Cbl-b. In this study we investigate the relation between Itk and Cbl-b or Vav1 by generating Itk/Cbl-b and Itk/Vav1 double-deficient mice. Deletion of Cbl-b in Itk(-/-) CD4(+) T cells restored proliferation and partially IL-2 production, and also led to a variable rescue of IL-4 production. Thus, Itk and Vav1 act mechanistically similarly in peripheral T cells, since the defects in Itk(-/-) T cells, as in Vav1(-/-) T cells, are rescued if cells are released from the negative regulation mediated by Cbl-b. In addition, only few peripheral CD4(+) and CD8(+) T cells were present in Vav1(-/-)Itk(-/-) mice due to severely impaired thymocyte differentiation. Vav1(-/-)Itk(-/-) thymocyte numbers were strongly reduced compared with WT, Itk(-/-) or Vav1(-/-) mice, and double-positive thymocytes displayed increased cell death and impaired positive selection. Therefore, our data also reveal that the combined activity of Vav1 and Itk is required for proper T-cell development and the generation of the peripheral T-cell pool.


Assuntos
Diferenciação Celular/imunologia , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-vav/deficiência , Proteínas Proto-Oncogênicas c-vav/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Sobrevivência Celular , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos/imunologia , Oligopeptídeos/metabolismo , Fenótipo , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Linfócitos T/metabolismo
19.
Neuroscience ; 422: 12-20, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705893

RESUMO

Oncostatin M (OSM) is a cytokine of the interleukin (IL)-6 family members. It induces blood-brain barrier (BBB) dysfunction by activating Janus-activated kinase (JAK) and signal transducer and activator of transcription (STAT) 3 pathways in brain endothelial cells. Brain pericytes located around microvessels are one of the BBB constituents. Pericytes work as a boundary surface between the blood circulation and brain parenchyma, and their functions are altered under pathophysiological conditions, leading to BBB dysregulation. However, it remains unknown whether pericytes are associated with OSM-induced BBB dysfunction. We demonstrated that pericyte exposure to OSM (100 ng/mL) elevated phosphorylation of STAT3, a main OSM signaling pathway, and that pericytes expressed OSM receptors (OSMRs) including OSMRß and glycoprotein 130. These results suggest that pericytes are able to respond to OSM. To determine the effects of OSM-reactive pericytes on BBB functions, rat brain endothelial cell (RBEC) monolayers were cultured with OSM-treated pericytes. The presence of pericytes exposed to 100 ng/mL of OSM for 48 h aggravated both the elevated permeability to sodium fluorescein and the lowered transendothelial electrical resistance which were induced by OSM in RBECs. This OSM-reactive pericyte-induced aggravation of lowered RBEC barrier function was reversed by ruxolitinib, a JAK inhibitor. These findings suggest that activated JAK/STAT3 signaling in pericytes contributes to OSM-produced BBB breakdown. Thus, OSM-reactive pericytes may have to be considered a characteristic machinery in the formation and progression of BBB breakdown under pathological conditions associated with increased OSM levels.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Janus Quinases/metabolismo , Oncostatina M/farmacologia , Oncostatina M/fisiologia , Fator de Transcrição STAT3/metabolismo , Animais , Receptor gp130 de Citocina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitrilas , Oncostatina M/antagonistas & inibidores , Subunidade beta de Receptor de Oncostatina M/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Pirazóis/farmacologia , Pirimidinas , Ratos , Transdução de Sinais
20.
Front Immunol ; 10: 409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915074

RESUMO

CD8 expression in T lymphocytes is tightly regulated by the activity of at least six Cd8 enhancers (E8I-E8VI), however their complex developmental stage-, subset-, and lineage-specific interplays are incompletely understood. Here we analyzed ATAC-seq data on the Immunological Genome Project database and identified a similar developmental regulation of chromatin accessibility of a subregion of E8I, designated E8I-core, and of E8VI. Loss of E8I-core led to a similar reduction in CD8 expression in naïve CD8+ T cells and in IELs as observed in E8I-/- mice, demonstrating that we identified the core enhancer region of E8I. While E8VI-/- mice displayed a mild reduction in CD8 expression levels on CD8SP thymocytes and peripheral CD8+ T cells, CD8 levels were further reduced upon combined deletion of E8I-core and E8VI. Moreover, activated E8I-core-/-E8VI-/- CD8+ T cells lost CD8 expression to a greater degree than E8I-core-/- and E8VI-/- CD8+ T cells, suggesting that the combined activity of both enhancers is required for establishment and maintenance of CD8 expression before and after TCR activation. Finally, we observed a severe reduction of CD4 CTLs among the TCRß+CD4+ IEL population in E8I-core-/- but not E8VI-/- mice. Such a reduction was not observed in Cd8a-/- mice, indicating that E8I-core controls the generation of CD4 CTLs independently of its role in Cd8a gene regulation. Further, the combined deletion of E8I-core and E8VI restored CD4 CTL subsets, suggesting an antagonistic function of E8VI in the generation of CD4 CTLs. Together, our study demonstrates a complex utilization and interplay of E8I-core and E8VI in regulating CD8 expression in cytotoxic lineage T cells and in IELs. Moreover, we revealed a novel E8I-mediated regulatory mechanism controlling the generation of intestinal CD4 CTLs.


Assuntos
Antígenos CD8/biossíntese , Regulação da Expressão Gênica/imunologia , Mucosa Intestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos Intraepiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T Citotóxicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA