RESUMO
An autism-associated gene Shank3 encodes multiple splicing isoforms, Shank3a-f. We have recently reported that Shank3a/b-knockout mice were more susceptible to kainic acid-induced seizures than wild-type mice at 4 weeks of age. Little is known, however, about how the N-terminal and ankyrin repeat domains (NT-Ank) of Shank3a/b regulate multiple molecular signals in the developing brain. To explore the functional roles of Shank3a/b, we performed a mass spectrometry-based proteomic search for proteins interacting with GFP-tagged NT-Ank. In this study, NT-Ank was predicted to form a variety of complexes with a total of 348 proteins, in which RNA-binding (n = 102), spliceosome (n = 22), and ribosome-associated molecules (n = 9) were significantly enriched. Among them, an X-linked intellectual disability-associated protein, Nono, was identified as a NT-Ank-binding protein. Coimmunoprecipitation assays validated the interaction of Shank3 with Nono in the mouse brain. In agreement with these data, the thalamus of Shank3a/b-knockout mice aberrantly expressed splicing isoforms of autism-associated genes, Nrxn1 and Eif4G1, before and after seizures with kainic acid treatment. These data indicate that Shank3 interacts with multiple RNA-binding proteins in the postnatal brain, thereby regulating the homeostatic expression of splicing isoforms for autism-associated genes after birth.
Assuntos
Camundongos Knockout , Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Repetição de Anquirina , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Splicing de RNA , Encéfalo/metabolismo , Convulsões/metabolismo , Convulsões/genética , Convulsões/induzido quimicamente , Humanos , Ligação Proteica , Camundongos Endogâmicos C57BLRESUMO
The clinical spectrum of Down syndrome (DS) ranges from congenital malformations to premature aging and early-onset senescence. Excessive immunoreactivity and oxidative stress are thought to accelerate the pace of aging in DS patients; however, the immunological profile remains elusive. We investigated whether peripheral blood monocyte-derived dendritic cells (MoDCs) in DS patients respond to lipopolysaccharide (LPS) distinctly from non-DS control MoDCs. Eighteen DS patients (age 2-47 years, 12 males) and 22 controls (age 4-40 years, 15 males) were enrolled. CD14-positive monocytes were immunopurified and cultured for 7 days in the presence of granulocyte-macrophage colony-stimulating factor and IL-4, yielding MoDCs in vitro. After the LPS-stimulation for 48 hours from days 7 to 9, culture supernatant cytokines were measured by multiplex cytokine bead assays, and bulk-prepared RNA from the cells was used for transcriptomic analyses. MoDCs from DS patients produced cytokines/chemokines (IL-6, IL-8, TNF-α, MCP-1, and IP-10) at significantly higher levels than those from controls in response to LPS. RNA sequencing revealed that DS-derived MoDCs differentially expressed 137 genes (74 upregulated and 63 downregulated) compared with controls. A gene enrichment analysis identified 5 genes associated with Toll-like receptor signaling (KEGG: hsa04620, Pâ =â 0.00731) and oxidative phosphorylation (hsa00190, Pâ =â 0.0173) pathways. MoDCs obtained from DS patients showed higher cytokine or chemokine responses to LPS than did control MoDCs. Gene expression profiles suggest that hyperactive Toll-like receptor and mitochondrial oxidative phosphorylation pathways configure the immunoreactive signature of MoDCs in DS patients.
Assuntos
Citocinas , Células Dendríticas , Síndrome de Down , Lipopolissacarídeos , Monócitos , Humanos , Síndrome de Down/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Masculino , Feminino , Adolescente , Adulto , Criança , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Monócitos/imunologia , Monócitos/metabolismo , Pré-Escolar , Pessoa de Meia-Idade , Citocinas/metabolismo , Adulto Jovem , Células CultivadasRESUMO
BACKGROUND: Advanced perinatal medicine has decreased the mortality rate of preterm infants. Long-term neurodevelopmental outcomes of very-low-birth-weight infants (VLBWIs) remain to be investigated. METHODS: Participants were 124 VLBWIs who had in-hospital birth from 2007 to 2015. Perinatal information, developmental or intelligence quotient (DQ/IQ), and neurological comorbidities at ages 3 and 6 years were analyzed. RESULTS: Fifty-eight (47%) VLBWIs received neurodevelopmental assessments at ages 3 and 6 years. Among them, 15 (26%) showed DQ/IQ <75 at age 6 years. From age 3 to 6 years, 21 (36%) patients showed a decrease (≤-10), while 5 (9%) showed an increase (≥+10) in DQ/IQ scores. Eight (17%) with autism spectrum disorder or attention-deficit hyperactivity disorder (ASD/ADHD) showed split courses of DQ/IQ, including two with ≤-10 and one with +31 to their scores. On the other hand, all 7 VLBWIs with cerebral palsy showed DQ ≤35 at these ages. Magnetic resonance imaging detected severe brain lesions in 7 (47%) of those with DQ <75 and 1 (18%) with ASD/ADHD. CONCLUSIONS: VLBWIs show a broad spectrum of neurodevelopmental outcomes after 6 years. These divergent profiles also indicate that different risks contribute to the development of ASD/ADHD from those of cerebral palsy and epilepsy in VLBWIs. IMPACT: Very-low-birth-weight infants (VLBWIs) show divergent neurodevelopmental outcomes from age 3 to 6 years. A deep longitudinal study depicts the dynamic change in neurodevelopmental profiles of VLBWIs from age 3 to 6 years. Perinatal brain injury is associated with developmental delay, cerebral palsy and epilepsy, but not with ASD or ADHD at age 6 years.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Paralisia Cerebral , Epilepsia , Lactente , Feminino , Gravidez , Humanos , Recém-Nascido , Criança , Pré-Escolar , Estudos Longitudinais , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo PesoRESUMO
OBJECTIVE: CHARGE syndrome is a congenital malformation syndrome caused by heterozygous mutations in the CHD7 gene. Severe combined immunodeficiency (SCID) arises from congenital athymia called CHARGE/complete DiGeorge syndrome. While cultured thymus tissue implantation (CTTI) provides an immunological cure, hematopoietic cell transplantation (HCT) is an alternative option for immuno-reconstitution of affected infants. We aimed to clarify the clinical outcomes of patients with athymic CHARGE syndrome after HCT. METHODS: We studied the immunological reconstitution and outcomes of four patients who received non-conditioned unrelated donor cord blood transplantation (CBT) at Kyushu University Hospital from 2007 to 2022. The posttransplant outcomes were compared with the outcomes of eight reported patients. RESULTS: Four index cases received CBT 70-144 days after birth and had no higher than grade II acute graft-versus-host disease. One infant was the first newborn-screened athymic case in Japan. They achieved more than 500/µL naïve T cells with balanced repertoire 1 month post transplant, and survived more than 12 months with home care. Twelve patients including the index cases received HCT at a median 106 days after birth (range: 70-195 days). One-year overall survival rate was significantly higher in patients who underwent non-conditioned HCT than in those who received conditioned HCT (100% vs. 37.5%, p = .02). Nine patients died, and the major cause of death was cardiopulmonary failure. CONCLUSIONS: Athymic infants achieved a prompt reconstitution of non-skewing naïve T cells after non-conditioned CBT that led to home care in infancy without significant infections. Non-conditioned CBT is a useful bridging therapy for newborn-screened cases toward an immunological cure by CTTI.
Assuntos
Síndrome CHARGE , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência , Timo/anormalidades , Lactente , Recém-Nascido , Humanos , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Síndrome CHARGE/complicações , Doença Enxerto-Hospedeiro/etiologia , Controle de Infecções , Transplante de Células-Tronco Hematopoéticas/efeitos adversosRESUMO
BACKGROUND: The systemic manifestations of coronavirus disease 2019 (COVID-19) include hyperinflammatory reactions in various organs. Recent studies showed evidence for the frequent involvement of central nervous system in affected patients; however, little is known about clinical features of cerebrovascular diseases in childhood-onset COVID-19. CASE PRESENTATION: A 10-year-old boy recovered from SARS-CoV-2 infection without complication. On 14 days after infection, he presented with loss of consciousness. A head computed tomography detected a ruptured cerebral aneurysm at the left posterior cerebral artery accompanying subarachnoid hemorrhage (SAH). Immediate surgical intervention did not rescue the patient, resulting in the demise 7 days after admission. Serological and genetic tests excluded the diagnosis of vasculitis and connective tissue disorders. Retrospective analysis showed markedly higher levels of interleukin (IL)-1ß, IL-6 and IL-8 in the cerebrospinal fluid than the serum sample concurrently obtained. A review of literature indicated that adult patients with COVID-19 have a risk for the later development of SAH during the convalescent phase of COVID-19. CONCLUSIONS: SAH is a severe complication of COVID-19 in children and adults who have asymptomatic cerebrovascular aneurysms. The markedly high levels of cytokines detected in the cerebrospinal fluid suggested that intracranial hyperinflammatory condition might be one of the possible mechanisms involved in the rupture of a preexisting cerebrovascular aneurysms.
Assuntos
Aneurisma Roto , COVID-19 , Aneurisma Intracraniano , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Masculino , Adulto , Criança , Humanos , Aneurisma Intracraniano/cirurgia , Estudos Retrospectivos , COVID-19/complicações , SARS-CoV-2 , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Inflamação/complicações , Aneurisma Roto/complicações , Aneurisma Roto/diagnóstico por imagemRESUMO
Severe obesity in young children prompts for a differential diagnosis that includes syndromic conditions. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) syndrome is a potentially fatal disorder characterized by rapid-onset obesity associated with hypoventilation, neural crest tumors, and endocrine and behavioral abnormalities. The etiology of ROHHAD syndrome remains to be established, but recent research has been focusing on autoimmunity. We report on a 2-year-old girl with rapid-onset obesity during the first year of life who progressed to hypoventilation and encephalitis in less than four months since the start of accelerated weight gain. The patient had a high titer of anti-ZSCAN1 antibodies (348; reference range < 40), and the increased values did not decline after acute phase treatment. Other encephalitis-related antibodies, such as the anti-NDMA antibody, were not detected. The rapid progression from obesity onset to central hypoventilation with encephalitis warns about the severe consequences of early-onset ROHHAD syndrome. These data indicate that serial measurements of anti-ZSCAN1 antibodies might be useful for the diagnosis and estimation of disease severity. Further research is needed to determine whether it can predict the clinical course of ROHHAD syndrome and whether there is any difference in antibody production between patients with and without tumors.
Assuntos
Neoplasias das Glândulas Suprarrenais , Doenças do Sistema Nervoso Autônomo , Encefalite , Doenças Hipotalâmicas , Obesidade Infantil , Feminino , Humanos , Pré-Escolar , Hipoventilação/complicações , Hipoventilação/diagnóstico , Obesidade Infantil/complicações , Neoplasias das Glândulas Suprarrenais/complicações , Síndrome , Encefalite/complicaçõesRESUMO
Microglia play versatile roles in progression of and protection against neuroinflammatory diseases. Little is known, however, about the mechanisms underlying the diverse reactivity of microglia to inflammatory conditions. We investigated how human induced microglia-like (iMG) cells respond to innate immune ligands. Quantitative PCR showed that poly-I:C and lipopolysaccharide (LPS) activated the expression of IL1B and TNF. Immunoreactivity of iMG did not differ between controls (n = 11) and patients with neuroinflammatory diseases (n = 24). Flow cytometry revealed that CD14high cells expressed interleukin (IL) -1ß after LPS treatment. Immunoblotting showed that poly-I:C and LPS differentially activated inflammatory pathways but commonly induced mitochondrial instability and the expression of pyruvate kinase isoform M2 (PKM2). Furthermore, a potent stimulator of PKM2 (DASA-58) alleviated IL-1ß production after LPS treatment. These data indicate that heterogeneous cell populations and mitochondrial stability underlie the divergent immunoreactivity of human iMG in environments.
Assuntos
Microglia , Doenças Neuroinflamatórias , Humanos , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Citometria de Fluxo , Expressão GênicaRESUMO
Melatonin entrainment of suprachiasmatic nucleus-regulating circadian rhythms is mediated by MT1 and MT2 receptors. Melatonin also has neuroprotective and mitochondrial activating effects, suggesting it may affect neurodevelopment. We studied melatonin's pharmacological effects on autism spectrum disorder (ASD) neuropathology. Deciduous tooth-derived stem cells from children with ASD were used to model neurodevelopmental defects and differentiated into dopaminergic neurons (ASD-DNs) with or without melatonin. Without melatonin, ASD-DNs had reduced neurite outgrowth, mitochondrial dysfunction, lower mitochondrial Ca2+ levels, and Ca2+ accumulation in the endoplasmic reticulum (ER) compared to control DNs from typically developing children-derived stem cells. Melatonin enhanced IP3-dependent Ca2+ release from ER to mitochondria, improving mitochondrial function and neurite outgrowth in ASD-DNs. Luzindole, an MT1/MT2 antagonist, blocked these effects. Thus, melatonin supplementation may improve dopaminergic system development in ASD by modulating mitochondrial Ca2+ homeostasis via MT1/MT2 receptors.
RESUMO
Myelin oligodendrocyte glycoprotein antibody (MOG-Ab) is an autoantibody associated with acquired demyelinating syndrome (ADS) in childhood and adults. The pathogenic roles of MOG-Ab and long-term outcomes of children with MOG-Ab-associated disease (MOGAD) remain elusive. We investigated the clinical features of children with ADS during follow-up in our institute. Clinical data were retrospectively analyzed using medical charts of patients managed in Kyushu University Hospital from January 1st, 2001, to March 31st, 2022. Participants were children of < 18 years of age when they received a diagnosis of ADS in our hospital. Cell-based assays were used to detect MOG-Ab in serum or cerebrospinal fluid at the onset or recurrence of ADS. The clinical and neuroimaging data of MOG-Ab-positive and MOG-Ab-negative patients were statistically analyzed. Among 31 patients enrolled in this study, 22 (13 females, 59%) received tests for MOG antibodies. Thirteen cases (59%) were MOG-Ab-positive and were therefore defined as MOGAD; 9 (41%) were MOG-Ab-negative. There were no differences between MOGAD and MOG-Ab-negative patients in age at onset, sex, diagnostic subcategories, or duration of follow-up. MOGAD patients experienced headache and/or somatosensory symptoms more frequently than MOG-Ab-negative patients (12/13 (92%) vs. 3/9 (22%); p = 0.0066). Somatosensory problems included persistent pain with hyperesthesia in the left toe, perineal dysesthesia, and facial hypesthesia. No specific neuroimaging findings were associated with MOGAD or the presence of somatosensory symptoms. CONCLUSIONS: Long-lasting somatosensory disturbances are prominent comorbidities in children with MOGAD. Prospective cohorts are required to identify molecular and immunogenetic profiles associated with somatosensory problems in MOGAD. WHAT IS KNOWN: ⢠Recurrence of demyelinating events occurs in a group of children with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). WHAT IS NEW: ⢠Long-lasting headache and somatosensory problems are frequent comorbidities with pediatric MOGAD. Pain and somatosensory problems may persist for more than 5 years. ⢠Neuroimaging data do not indicate specific findings in children with somatic disturbances.
Assuntos
Dor Crônica , Humanos , Feminino , Criança , Glicoproteína Mielina-Oligodendrócito , Estudos Prospectivos , Estudos Retrospectivos , Cefaleia , Hospitais Universitários , Síndrome , AutoanticorposRESUMO
PURPOSE: Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects. METHODS: Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated. RESULTS: Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments. CONCLUSION: A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.
Assuntos
Exoma , Malformações do Sistema Nervoso , Criança , Humanos , Exoma/genética , Mutação , Malformações do Sistema Nervoso/genética , Atrofia/genética , Receptor 1 de Folato/genética , CinesinasRESUMO
Phelan-McDermid syndrome (PMS) is a rare genetic disorder presenting with developmental delay, epilepsy, and autism spectrum disorder (ASD). The segmental deletion of chromosome 22q13.3 affects the copy number of SHANK3, the gene encoding a scaffolding protein at the postsynaptic density. Biological studies indicate that SHANK3 plays crucial roles in the development of synaptic functions in the postnatal brain. Notably, induced pluripotent stem (iPS) cells have enabled researchers to develop brain organoids and microglia from patients and to explore the pathophysiology of neurodevelopmental disorders in human cells. Single-cell RNA sequencing of these cells revealed that human-specific genes are uniquely expressed during cortical development. Thus, patient-derived disease models are expected to identify as-yet-unidentified functions of SHANK3 in the development of human brain. These efforts may help establish a new style of translational research in pediatrics, which is expected to provide therapeutic insight for children with PMS and broader categories of disease. IMPACT: Phelan-McDermid syndrome is a prototypic model for molecular studies of autism spectrum disorder. Brain organoids are expected to provide therapeutic insight. Single-cell RNA sequencing of microglia may uncover the functional roles of human-specific genes.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Pediatria , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Transtorno Autístico/genética , Transtorno Autístico/terapia , Criança , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 22/genética , Humanos , Proteínas do Tecido Nervoso/genéticaRESUMO
BACKGROUND: Intracranial aneurysms (ICA) rarely occur in children under 3 years of age. Little is known for neuroimaging parameters that predict survival and clinical outcomes of patients with ICA in early childhood. CASE PRESENTATION: A 2-year-old girl showed intracranial hemorrhage due to a rupture of aneurysm at the middle cerebral artery. Quantitative measurements of ischemic damages on the head computed tomography (CT) marked an extremely low score of 2 points with modified Alberta Stroke Program Early CT Score (mASPECTS). She died 15 days after admission. In publications from 2021 to 2022, we found 21 children who were under 3 years of age at onset of ICA. None of them died, but two of three patients who had mASPECTS scores 0-8 showed developmental delay and/or epilepsy as neurological complications. CONCLUSION: Early CT findings are applicable for predicting survival and neurological outcomes of young children with intracranial hemorrhage.
Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Feminino , Criança , Humanos , Pré-Escolar , Hemorragia Subaracnóidea/complicações , Aneurisma Intracraniano/complicações , Acidente Vascular Cerebral/complicações , Artéria Cerebral Média , Hemorragias Intracranianas/complicações , Aneurisma Roto/complicações , Angiografia Cerebral/métodosRESUMO
BACKGROUND: Infantile-onset Pompe disease (IOPD) is the most severe phenotype of a lysosomal storage disorder caused by acid alpha-glucosidase (GAA) deficiency. An enzymatic newborn screening (NBS) program started regionally in Japan in 2013 for early enzyme replacement therapy (ERT). We report the ERT responses of the first NBS-identified Japanese IOPD case and of another case diagnosed prior to NBS, to discuss the problems of promptly starting ERT in Japan. METHODS: Acid alpha-glucosidase activity was measured by fluorometric assay in both patients. The diagnosis of IOPD was confirmed by next-generation followed by Sanger-method sequencing (patient 1) or direct sequencing of polymerase chain reaction (PCR)-amplified products (patient 2) of the GAA gene. RESULTS: A female infant identified by NBS had a novel out-of-frame (p.F181Dfs*6) variant and a reported pathogenic (p.R600C) variant, along with two pseudodeficiency variants. Enzyme replacement therapy was started at age 58 days when the infant had increased serum levels of creatine kinase and slight myocardial hypertrophy. Clinical and biochemical markers improved promptly. She has been alive and well without delayed development at age 14 months. Patient 2, a Japanese male, received a diagnosis of IOPD at age 5 months before the NBS era. He had a homozygotic variant of GAA (p.R608X), later registered as a cross-reactive immunological material (CRIM)-negative genotype, and developed a high titer of anti-rhGAA antibodies. The patient has survived myocardial hypertrophy with continuous respiratory support for 12 years of ERT. CONCLUSIONS: Enzyme replacement therapy should not be delayed over the age of 2 months for reversible cardiac function, although CRIM-negative cases may hamper turnaround time reduction.
Assuntos
Doença de Depósito de Glicogênio Tipo II , Cardiomegalia , Terapia de Reposição de Enzimas , Feminino , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Japão , Masculino , alfa-Glucosidases/genética , alfa-Glucosidases/uso terapêuticoRESUMO
Mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1)-deficiency is a rare combined immunodeficiency characterized by recurrent infections, dermatitis and enteropathy. We herein investigate the immunological profiles of our patient and previously reported children with MALT1-deficiency. A mutation analysis was performed by targeted panel sequencing for primary immunodeficiency. Lymphocyte subset, activation and B cell differentiation were analyzed by flow cytometry and t-distributed stochastic neighbor embedding. Pneumocystis pneumonia developed in a 6-month-old Japanese infant with atopic dermatitis, enteritis and growth restriction. This infant showed agammaglobulinemia without lymphopenia. At 8 years of age, the genetic diagnosis of MALT1-deficiency was confirmed on a novel homozygous mutation of c.1102G>T, p.E368X. T cell stimulation tests showed impairments in the production of interleukin-2, phosphorylation of nuclear factor kappa B (NF-κB) p65 and differentiation of B cells. In combination with the literature data, we found that the number of circulatory B cells, but not T cells, were inversely correlated with the age of patients. The hematopoietic cell transplantation (HCT) successfully reconstituted the differentiation of mature B cells and T cells. These data conceptualize that patients with complete MALT1-deficiency show aberrant differentiation and depletion of B cells. The early diagnosis and HCT lead to a cure of the disease phenotype associated with the loss-of-function mutations in human CARD11.
Assuntos
Linfócitos B/imunologia , Proteínas Adaptadoras de Sinalização CARD/genética , Guanilato Ciclase/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/deficiência , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Imunodeficiência Combinada Severa/genética , Linfócitos T/imunologia , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Linfócitos B/citologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Criança , Análise Mutacional de DNA , Humanos , Interleucina-2/biossíntese , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfopenia/diagnóstico , Linfopenia/genética , Masculino , NF-kappa B/metabolismoRESUMO
Developmental and epileptic encephalopathy (DEE) represents a group of neurodevelopmental disorders characterized by infantile-onset intractable seizures and unfavorable prognosis of psychomotor development. To date, hundreds of genes have been linked to the onset of DEE. GNAO1 is a DEE-associated gene encoding the alpha-O1 subunit of guanine nucleotide-binding protein (GαO ). Despite the increasing number of reported children with GNAO1 encephalopathy, the molecular mechanisms underlying their neurodevelopmental phenotypes remain elusive. We herein present that co-immunoprecipitation and mass spectrometry analyses identified another DEE-associated protein, SPTAN1, as an interacting partner of GαO . Silencing of endogenous Gnao1 attenuated the neurite outgrowth and calcium-dependent signaling. Inactivation of GNAO1 in human-induced pluripotent stem cells gave rise to anomalous brain organoids that only weakly expressed SPTAN1 and Ankyrin-G. Furthermore, GNAO1-deficient organoids failed to conduct synchronized firing to adjacent neurons. These data indicate that GαO and other DEE-associated proteins organize the cytoskeletal remodeling and functional polarity of neurons in the developing brain.
Assuntos
Citoesqueleto/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Animais , Encéfalo/metabolismo , Encefalopatias/metabolismo , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , FenótipoRESUMO
In our recent paper titled "Bi-layering at ionic liquid surfaces: a sum-frequency generation vibrational spectroscopy- and molecular dynamics simulation-based study" co-authored by T. Iwahashi, T. Ishiyama, Y. Sakai, A. Morita, D. Kim, and Y. Ouchi, Phys. Chem. Chem. Phys., 2020, 22, 12565 (hereafter referred to as IW), the sum-frequency (SF) spectra for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA] n = 4, 6, 8, 10, and 12) were reported. In particular, a clear decrease in the SF signals from the [TFSA]- anions with increasing chain length of the [Cnmim]+ cation (Fig. 5 of IW) was explained in terms of "head-to-head" bi-layer formation at the air/ionic liquid (IL) interface. A comment by M. Deutsch et al. (hereafter referred to as DE) questioned this report, claiming that our proposed structure is not consistent with a multilayered electron density (ED) profile obtained by X-ray reflectivity (XR).
RESUMO
BACKGROUND: Pierson syndrome (PS) is a rare autosomal recessive disorder, characterized by congenital nephrotic syndrome and microcoria. Advances in renal replacement therapies have extended the lifespan of patients, whereas the full clinical spectrum of PS in infancy and beyond remains elusive. CASE PRESENTATION: We present the case of a 12-month-old boy with PS, manifesting as the bilateral microcoria and congenital nephrotic syndrome. He was born without asphyxia, and was neurologically intact from birth through the neonatal period. Generalized muscle weakness and hypotonia were recognized from 3 months of age. The infant showed recurrent vomiting at age 5 months of age, and was diagnosed with gastroesophageal reflux and intestinal malrotation. Despite the successful surgical treatment, vomiting persisted and led to severely impaired growth. Tulobuterol treatment was effective in reducing the frequency of vomiting. Targeted sequencing confirmed that he had a compound heterozygous mutation in LAMB2 (NM_002292.3: p.Arg550X and p.Glu1507X). A search of the relevant literature identified 19 patients with severe neuro-muscular phenotypes. Among these, only 8 survived the first 12 months of life, and one had feeding difficulty with similar gastrointestinal problems. CONCLUSIONS: This report demonstrated that severe neurological deficits and gastrointestinal dysfunction may emerge in PS patients after the first few months of life.
Assuntos
Anormalidades Múltiplas/genética , Laminina/genética , Síndromes Miastênicas Congênitas/genética , Síndrome Nefrótica/genética , Distúrbios Pupilares/genética , Anormalidades Múltiplas/patologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Lactente , Masculino , Mutação , Síndromes Miastênicas Congênitas/patologia , Síndrome Nefrótica/patologia , Fenótipo , Distúrbios Pupilares/patologiaRESUMO
c-Jun-amino-terminal kinase-interacting protein 3 (JIP3), encoded by MAPK8IP3, is an adaptor protein of the kinesin-1 complex and essential for axonal transport in neurons. However, an association between MAPK8IP3 variants and human disease has not been established. We identified 5 individuals from four families with recurrent de novo variants c.1732C>T (p.Arg578Cys) and c.3436C>T (p.Arg1146Cys) in MAPK8IP3. The core phenotype includes spastic diplegia, intellectual disability, cerebral atrophy, and corpus callosum hypoplasia. Zebrafish embryos overexpressing human mutant JIP3 showed axon varicosities of the posterior lateral line nerve, suggesting an adverse effect on the developing axons. Our results suggest that MAPK8IP3 variants cause a neurodevelopmental disease. ANN NEUROL 2019;85:927-933.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Variação Genética/genética , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/genética , Fenótipo , Adolescente , Adulto , Animais , Pré-Escolar , Feminino , Humanos , Masculino , Peixe-ZebraRESUMO
Room-temperature ionic liquids (RTILs) are being increasingly employed as novel solvents in several fields, including chemical engineering, electrochemistry, and synthetic chemistry. To further increase their usage potential, a better understanding of the structure of their surface layer is essential. Bi-layering at the surfaces of RTILs consisting of 1-alkyl-3-methylimidazolium ([Cnmim]+; n = 4, 6, 8, 10, and 12) cations and bis(trifluoromethanesulfonyl)amide ([TFSA]-) anions was demonstrated via infrared-visible sum-frequency generation (IV-SFG) vibrational spectroscopy and molecular dynamics (MD) simulations. It was found that the sum-frequency (SF) signal from the [TFSA]- anions decreases as the alkyl chain length increases, whereas the SF signal from the r+ mode (the terminal CH3 group) of the [Cnmim]+ cations is almost the same regardless of chain length. MD simulations show the formation of a bi-layered structure consisting of the outermost first layer and a submerged second layer in a "head-to-head" molecular arrangement. The decrease in the SF signals of the normal modes of the [TFSA]- anions is caused by destructive and out-of-phase interference of vibrations of corresponding molecular moieties oriented toward each other in the first and second layers. In contrast, the r+ mode of [Cnmim]+ does not experience destructive interference because the peak position of the r+ mode differs marginally at the surface and in the bulk. Our conclusions are not limited to the system presented here. Similar bi-layered structures can be expected for the surfaces of conventional RTILs, which necessitates the consideration of bi-layering in the design and application.
RESUMO
This case series aimed to characterize the clinical features, management, and outcomes of apnea in infants with trisomy 18. Participants in this study were infants with trisomy 18 who were born alive and admitted to the neonatal intensive care unit in Kyushu University Hospital from 2000 to 2018. Retrospective analysis was performed on clinical data recorded in our department. Twenty-seven infants with trisomy 18 were admitted to our hospital during the study period, of which 25 (nine males, 16 females) were enrolled as eligible participants in this study. Among them, 14 started presenting with apnea from median 3.5 days of age (range 0-47d). In these infants with apnea, eight received respiratory support of positive pressure ventilation (PPV). The 1-year survival rate of infants in the PPV group was higher than that of non-PPV-supported infants (5 out of 8 vs 0 out of 6 infants). Five PPV-supported infants received a diagnosis of epilepsy, which was controlled by antiepileptic drugs. Postnatal respiratory intervention provides better prognosis in infants with trisomy 18. Improved survival leads to accurate diagnosis and treatment of apneic events in association with epilepsy. WHAT THIS PAPER ADDS: Respiratory support is effective against apnea in infants with trisomy 18. Intervention with ventilation provides a higher chance of prolonged survival. Improved survival leads to the accurate diagnosis and treatment of epilepsy-associated apnea.