Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Environ Manage ; 357: 120767, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560953

RESUMO

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Substâncias Húmicas/análise , Solo/química , Microbiologia do Solo , Herbicidas/química , Poluentes do Solo/química
2.
Oecologia ; 202(4): 743-755, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37568056

RESUMO

An adequate supply of food sources with high levels (i.e., weight proportion of total fatty acids) and contents (i.e., absolute amount per mass) of long chain polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are important for ecosystems. Therefore, the supply of EPA and DHA from basal food sources is a useful indicator of ecosystem health. To determine whether EPA and DHA levels and contents in fish can be used as indicators of EPA and DHA supply in lakes, five dominant species of fish and basal food sources (seston and sediment) were collected monthly from June to November from 2016 to 2021 from Lake Hachiro, Japan. Seston and Hypomesus nipponensis were collected from 12 lakes (one collection per lake) with varying seston contents in EPA and DHA. The trends of EPA and DHA in all fish species were similar to those of the basal food sources. Correlation analysis showed that the EPA levels were strongly correlated between fish and seston; moreover, the correlation coefficient increased when a 1- or 2-month moving average was applied to the basal food sources, suggesting that fish represent a time-integrated supply of EPA and DHA. EPA levels of H. nipponensis had the highest correlation coefficients with seston among all fish species. EPA levels of H. nipponensis were significantly correlated with those of seston among lakes. The results of this study suggest that H. nipponensis is a useful indicator of EPA and DHA supplies in lake ecosystems.


Assuntos
Ecossistema , Lagos , Animais , Ácidos Graxos , Peixes , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos/análise
3.
J Environ Manage ; 320: 115670, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35921747

RESUMO

Exploring the removal rules of MFC on composite heavy metal pollution is very important for the future development and field application of MFC. We constructed a three-chamber soil MFC and the results showed that with the gradual deterioration of soil heavy metal contamination from single heavy metal to metals in different oxidation states (e.g., copper (II), lead (II), and chromium (III) compounds), the internal resistance of the soil MFC increased by 2.16-2.71 times, which significantly inhibited the power production performance of the MFC. After 59 days of remediation, the migration removal efficiencies of total Cu, total Cr and total Pb from the soil under composite conditions were 36.69%, 52.35% and 19.67%, respectively. The main removal mechanisms included both electromigration and diffusion, where electromigration contributed 74.41%, 31.48% and 97.67% to the removal of total Cu, Cr and Pb, respectively. The removal of composite heavy metals was affected by adsorption-desorption competition and synergism. The competition of Pb for specific adsorption sites in soil leads to the increase of mobility of Cr and Cu, which is conducive to migration and removal. The migration of Cu and Pb ions to the cathode inhibited the diffusion of Cr to the anode; however, it drove the synergistic migration of Pb ions to the cathode. For the heavy metals migrated from the soil into the catholyte, only Cu2+ with high redox potential is reduced to copper at the cathode.


Assuntos
Fontes de Energia Bioelétrica , Metais Pesados , Poluentes do Solo , Cobre/análise , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Tecnologia
4.
Mar Drugs ; 19(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202307

RESUMO

Bivalves serve as an important aquaculture product, as they are the source of essential fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in our diet. However, their cultivation in the wild can be affected by fouling organisms that, in turn, affect their EPA and DHA content. The effects of fouling organisms on the EPA and DHA contents of cultivated bivalves have not been well documented. We examined the effects of fouling organisms on the EPA and DHA contents and condition index of cultured oysters, Crassostrea gigas, in an aquaculture system. We sampled two-year-old oysters from five sites in Shizugawa Bay, Japan, in August 2014. Most of the fouling organisms were sponges, macroalgae, and Mytilus galloprovincialis. A significant negative relationship existed between the DHA content in C. gigas and the presence of sponges and macroalgae. A lower C. gigas EPA content corresponded to a higher M. galloprovincialis fouling mass and a lower C. gigas condition index. This can be explained by dietary competition between C. gigas and M. galloprovincialis for diatoms, which were the main producer of EPA in our study sites. Our findings indicate that fouling organisms likely reduce the EPA and DHA content in cultivated oysters. Therefore, our results suggest that the current efforts to remove fouling organisms from oyster clusters is an effective strategy to enhance the content of EPA and DHA in oysters.


Assuntos
Organismos Aquáticos , Crassostrea , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Animais , Aquicultura , Japão
5.
Ecotoxicol Environ Saf ; 203: 110966, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678755

RESUMO

We studied the effect of the chemical interaction of nutrients and the ethylenediamine tetraacetic acid (EDTA) on metals toxicity. Growth inhibition tests of Pseudokirchneriella subcapitata by nutrient metals copper (Cu) and zinc (Zn), and the non-nutrient metal lead (Pb), were performed. The high-enriched Bold's Basal medium (BBm) and two low-enriched standard media, recommended by the Organization for Economic Cooperation and Development (OECDm) and Environmental Protection Agency-algal assay procedure medium (AAPm), were used in this study. The metals toxicity was affected by the interaction of nutrients and EDTA. Cu+2 was more toxic in the OECDm (EC50 20.3 µg/L), while Pb+2 (EC50 23.1 µg/L) and Zn+2 (EC50 99.4 µg/L) in the AAPm. Non-toxic effect of these metals was observed in BBm, but the exclusion of EDTA shifted it into a toxic medium. Finally, we found that the toxicity of the studied nutrient metals is mainly influenced by EDTA, which reduced the concentration of ionized metals, while the toxicity of the non-nutrient metal is affected by EDTA and phosphates.


Assuntos
Monitoramento Biológico/métodos , Quelantes/farmacologia , Ácido Edético/farmacologia , Metais Pesados/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Bioensaio , Cobre/toxicidade , Relação Dose-Resposta a Droga , Interações Medicamentosas , Chumbo/toxicidade , Microalgas/crescimento & desenvolvimento , Modelos Teóricos , Zinco/toxicidade
7.
Bioresour Technol ; 404: 130909, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815696

RESUMO

To enhance the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in sediments and to elucidate the mechanisms by which microbial electrochemical action aids in the degradation of PAHs, humic acid was used as an electron mediator in the microbial electrochemical system in this study. The results revealed that the addition of humic acids led to increases in the removal efficiencies of naphthalene, phenanthrene, and pyrene by 45.91%, 97.83%, and 85.56%, respectively, in areas remote from the anode, when compared to the control group. The investigation into the microbial community structure and functional attributes showed that the presence of humic acid did not significantly modify the microbial community composition or its functional expression at the anode. However, an examination of humic acid transformations demonstrated that humic acid extended the electron transfer range in sediment via the redox reactions of quinone and semiquinone groups, thereby facilitating the PAHs degradation within the sediment.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos , Substâncias Húmicas , Hidrocarbonetos Policíclicos Aromáticos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Elétrons , Eletrodos , Técnicas Eletroquímicas/métodos , Oxirredução
8.
J Hazard Mater ; 475: 134908, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889459

RESUMO

Previous research has established a MES embedding a microbial electrode to facilitate the degradation of antibiotics in water. We modified microbial electrodes in the MES with PEDOT and rGO to enhance electron utilization on electrodes and to further promote antibiotic degradation. Density functional theory calculations on the SMX molecule indicated that the C4-S8 and S8-N27 bonds are the most susceptible to electron attack. The introduction of various functional groups and multivalent elements enhanced the electrodes' capacitance and electron mediation capabilities. This led to enhance both electron utilization on the electrodes and the removal efficiency of SMX. After 120 h, the degradation efficiency of SMX by PEDOT and rGO-modified electrodes increased by 45.47 % and 25.19 %, respectively, compared to unmodified electrodes. The relative abundance of sulfate-reducing and denitrifying bacteria significantly increased in PEDOT and rGO-modified electrodes, while the abundance of nitrifying bacteria and potential antibiotic resistance gene host microbes significantly decreased. The impact of PEDOT modification positively influenced microbial Cellular Processes, including cell growth, death, and motility. This study provides insights into the mechanisms of direct electron involvement in antibiotic degradation steps in microbial electrochemistry, and provides a possible path for improved strategies in antibiotic degradation and sustainable environmental remediation.


Assuntos
Antibacterianos , Eletrodos , Elétrons , Polímeros , Antibacterianos/química , Polímeros/química , Bactérias/metabolismo , Bactérias/genética , Grafite/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Técnicas Eletroquímicas , Poluentes Químicos da Água/química
9.
Environ Technol ; : 1-14, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488119

RESUMO

Anaerobic Membrane Bioreactors (AnMBR) offer numerous advantages in wastewater treatment, yet they are prone to membrane fouling after extended operation, impeding their long-term efficiency and stability. In this study, a coupled system was developed using modified conductive membranes as the filtration membrane for the AnMBR and as the anodic conductive membrane in the microbial electrochemical system, with a total volume of approximately 2.57 L. The research focused on understanding the membrane fouling characteristics of the AnMBR when treating wastewater containing sodium ion (Na+) and magnesium ion (Mg2+). When the system was treating wastewater containing Na+, organic pollutants such as proteins and polysaccharides were identified as the primary causes of membrane fouling. Three experimental groups generating different electric currents exhibited extended operational times compared to the open-circuit control group, with extensions of 30, 24, and 15 days, respectively. Conversely, when treating wastewater with Mg2+, organic-inorganic composite fouling, primarily driven by Mg2+ bridging, emerged as the key challenge, with the experimental groups showing operational extensions of 5, 8, and 23 days, respectively, in comparison to the control group. Analysis of proteins and polysaccharides indicated that electric current played a crucial role in reducing organic fouling in the sludge cake layer. When treating wastewater containing Na+, the effectiveness of membrane fouling control was directly proportional to the electric current, while when treating wastewater containing Mg2+, it was directly proportional to the voltage.

10.
Zootaxa ; 3669: 350-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26312347

RESUMO

Seven hermit crab species of the pagurid genus Pagurixus Melin, 1939 are reported on the basis of material recently collected from the northern and central islands of the Ryukyu Islands, southwestern Japan. Four species are new to the hermit crab fauna of the Ryukyu Islands: P. acanthocarpus Komai & Okuno, 2009; P. fasciatus Komai & Myorin, 2005; P. formosus Komai, 2010; and P. tweediei (Forest, 1956). One species is described as new to science: P vicinus sp. nov. is closely similar to P. fasciatus in both morphology and coloration, but distinguished by the armature on the left cheliped and right second pereopod. Paguruxus carininanus Komai & Osawa, 2006 and P. pseliophorus Komai & Osawa, 2006, both previously known from the Ryukyu Islands, are here reported from new localities.


Assuntos
Decápodes/anatomia & histologia , Decápodes/classificação , Distribuição Animal , Animais , Decápodes/fisiologia , Japão , Especificidade da Espécie
11.
Bioresour Technol ; 374: 128760, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804586

RESUMO

To remove membrane fouling, a bio-electrochemical system that can generate a micro-electric field and micro-current was constructed. After 11 days of operation, the trans-membrane pressure difference of membrane modules in the open- and closed-circuit groups increased by 35.8 kPa and 6.2 kPa, respectively. The concentrations of total polysaccharide and protein in the open-circuit group were 1.8 and 1.1 times higher than those in the closed-circuit group, respectively. In addition, X-ray photoelectron spectroscopy and thermogravimetric analysis showed that inorganic crystals such as calcium carbonate were present on the membrane surface, and the concentration of calcium ion in the control group was 14.7 times that of the experimental group. High-throughput sequencing demonstrated that the enrichment of some electroactive bacteria and other microorganisms has a positive effect on the control of membrane fouling. Therefore, this system can effectively alleviate membrane fouling of a bioreactor, by targeting the membrane foulants.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Esgotos , Anaerobiose , Membranas Artificiais , Reatores Biológicos/microbiologia
12.
J Hazard Mater ; 443(Pt A): 130172, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308935

RESUMO

In the water environment such as lakes, there is a phenomenon that the sediment and overlying water are polluted at the same time. In this study, A microbial electrochemical system with an embedded active electrode was developed for simultaneous removal of polycyclic aromatic hydrocarbons in sediment and antibiotics in overlying water by in-situ utilization of electrons. In the closed-circuit group, the pyrene concentration in sediment decreased from 9.94 to 2.08 mg/L in 96 d, and the sulfamethoxazole concentration in water decreased from 5.12 to 1.12 mg/L in 168 h. These values were 18.71 % and 31.21 % higher, respectively, than those of the open-circuit group. The pyrene degradation pathway may be from polycyclic aromatic substances to low-cyclic aromatic hydrocarbons via successive breakdown of benzene rings. Multiple metabolites produced by reduction verified that SMX or its intermediates were reductively degraded in water. On the active electrode, the relative abundances of Acetobacterium and Piscinibacter, which were genera related to SMX degradation, was promoted, while the electricity-producing genus Pseudomonas was inhibited. ccdA, pksS, torC, and acsE genes related to extracellular electron transport may accelerate electron transport. Electrons could be transferred to SMX under the influence of proteins involved in extracellular electron transport, and SMX could be degraded reductively as an electron acceptor by microbes. Generation of electrons and in-situ utilization for simultaneous removal of solid-liquid two-phase pollutants will provide mechanistic insight into pollutant biodegradation by microbial electrochemistry and promote the development of sustainable bioremediation strategies for surface water.


Assuntos
Elétrons , Sedimentos Geológicos , Sedimentos Geológicos/química , Água/química , Sulfametoxazol/metabolismo , Biodegradação Ambiental , Eletrodos , Pirenos
13.
Sci Total Environ ; 893: 164909, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327905

RESUMO

Fe2O3 plays a complex role in soil electron transfer. A microbial fuel cell (MFC) was constructed to drive the directional transfer of electrons in soil, and the results revealed that Fe2O3 acts first as a capacitor, intercepting and reserving the electrons produced by electrochemically active bacteria (EAB) in the soil, which leads to a decrease in hexachlorobenzene (HCB) removal efficiency with increasing proportions of Fe2O3 dosing (R2 = 0.85). The Fe2O3 then exerted its semiconductor properties in synergy with dissolved Fe2+ as an electron mediator to promote the flow of electrons in the soil. Power generation by the MFC was significantly and positively correlated with the concentration of dissolved Fe2+ (r = 0.51) and the Fe2O3 dosing proportion (r = 0.97). The higher HCB removal efficiency, spatial distribution of intercepted electrons, and abundance of electron transfer metabolic pathways confirmed that Fe2O3 promoted electron-flow fluxes in soil. Additionally, Geobacter sp., (direct electron transfer) and Pseudomonas sp., (indirect electron transfer) were the dominant electrochemically active bacteria in the anode and soil of MFC, respectively. In this study, both dissolved (Fe2+) and solid state (Fe2O3) electron mediators functioned as electron transporters in soil, we propose an internal "electron internet" of soil consisting of points and lines.


Assuntos
Fontes de Energia Bioelétrica , Elétrons , Solo , Hexaclorobenzeno/metabolismo , Bactérias/metabolismo , Transporte de Elétrons , Fontes de Energia Bioelétrica/microbiologia , Eletrodos
14.
Chemosphere ; 291(Pt 3): 133110, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34848234

RESUMO

Rising temperature enhances the algal growth, which in turn increases the water pH. Ecotoxicity studies have suggested that copper becomes more toxic to microalgae species by increasing the temperature (within 20-30 °C) and pH. In this study, the joined effect of pH and temperature on copper toxicity to the microalgae Raphidocelis subcapitata was investigated using acclimated cells. Algal growth and toxicity tests were conducted using the medium recommended by the Organisation for Economic Co-operation and Development (OECD medium) at pH 6, 7, and 8 units from 15 to 30 °C, spaced by 3 °C. The specific growth rate of R. subcapitata increased by raising the pH and temperature, attributed to the higher membrane permeability and metabolism. The ecotoxicity tests showed that temperature changes the effect of pH on copper toxicity. Copper became less toxic when rising the temperature from 15 to 18 °C and from 6 to 8 pH-unit, suggesting that high pH controls copper bioavailability and toxicity. In contrast, from 21 to 30 °C, the effect of copper was not significantly altered by temperature, but it became more toxic at high pH. Results of this study warn about the higher risk of copper in cold seasons rather than warm conditions.


Assuntos
Microalgas , Poluentes Químicos da Água , Cobre/toxicidade , Concentração de Íons de Hidrogênio , Temperatura , Água , Poluentes Químicos da Água/toxicidade
15.
Bioresour Technol ; 365: 128163, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283665

RESUMO

To alleviate membrane fouling, a membrane of the membrane bioreactor was directly used as the anode of the bio-electrochemical system. On the 14th day, the control group had blocked, while the experimental group with a current of 0.44 mA, the increase in ΔTMP was only 2.2 kPa. The polysaccharide and protein concentrations in the open-circuit group were 4.2 and 2.9 times higher than those in the closed-circuit group, respectively. Three-dimensional fluorescence spectroscopy and gas chromatography mass spectrometry showed that most of the deposition in the control group contained high-molecular-weight compounds, especially long-chain ester derivatives, phenols, and complex hydrocarbons, whereas the experimental group was the opposite. Therefore, current (electrons) can change the composition of the cake layer. High-throughput sequencing indicated that a significantly higher abundance of electroactive microorganisms on the experimental than control group. Two-dimensional correlation spectroscopy showed that electrons promote the degradation of polysaccharides, thereby alleviating membrane fouling.


Assuntos
Membranas Artificiais , Esgotos , Reatores Biológicos
16.
Mar Pollut Bull ; 183: 114054, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007269

RESUMO

The analytical spatial scale and selection of biogeochemical indicators affect interpretations of land-use impacts on coastal marine environments. In this study, nine biogeochemical indicators were sampled from 36 locations of coral reefs fringing a subtropical island, and their relationships with watershed land use were assessed by spatial autoregressive models with spatial weight matrixes based on distance thresholds of a few to 30 km. POM-relevant indicators were associated with agricultural and urban lands of watersheds within relatively small ranges (6-14 km), while the concentrations of inorganic nutrients were associated with watersheds within 20 km or more. The macroalgal δ15N showed a strong relationship with agricultural lands of watersheds within 7 km and urban/forest lands of watersheds within 24 km. These results demonstrate significant effects of land use on the coral reef ecosystems of the island, and the importance of appropriate combinations of analytical scales and biogeochemical indicators.


Assuntos
Antozoários , Recifes de Corais , Agricultura , Animais , Ecossistema
17.
Ecol Appl ; 20(1): 126-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20349835

RESUMO

Historically, forested riparian buffers have been created to provide protection for aquatic organisms and aquatic ecosystem functions. Increasingly, new and existing riparian buffers are being used also to meet terrestrial conservation requirements. To test the effectiveness of riparian buffers for conserving terrestrial fauna, we conducted a meta-analysis using published data from 397 comparisons of species abundance in riparian buffers and unharvested (reference) riparian sites. The response of terrestrial species to riparian buffers was not consistent between taxonomic groups; bird and arthropod abundances were significantly greater in buffers relative to unharvested areas, whereas amphibian abundance decreased. Edge-preferring species were more abundant in buffer sites than reference sites, whereas species associated with interior habitat were not significantly different in abundance. The degree of buffer effect on animal abundance was unrelated to buffer width; wider buffers did not result in greater similarity between reference and buffer sites. However, responses to buffer treatment were more variable in buffers <50 m wide, a commonly prescribed width in many management plans. Our results indicate that current buffer prescriptions do not maintain most terrestrial organisms in buffer strips at levels comparable to undisturbed sites.


Assuntos
Conservação dos Recursos Naturais/métodos , Rios , Árvores , Movimentos da Água , Poluição Química da Água/prevenção & controle , Animais
18.
Mar Environ Res ; 149: 1-6, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31132526

RESUMO

How nutritional quality of dietary resources affects species richness of consumer communities is poorly understood. We used fatty acids as indicators of nutritional quality of sedimentary organic matter to evaluate the effects of highly unsaturated fatty acid (HUFA) content in sediments and fatty acid diversity in sedimentary organic matter on species richness of deposit feeders. We sampled benthic animals and sedimentary organic matter, a potential dietary source for deposit feeders, at 54 locations in two bay ecosystems. The species richness of deposit feeders ranged between 1 and 29 and had a parabolic relationship with the organic carbon content of sediments. At intermediate range of sedimentary organic carbon content, the species richness of deposit feeders was positively related to HUFA content and fatty acid diversity. These findings indicate that nutritional quality is one of the important factors determining species richness. In particular, HUFA content and fatty acid diversity are useful indicators of the nutritional quality of potential diets and good predictors of the occurrences of benthic invertebrates in marine habitats.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Invertebrados , Animais , Baías/química , Biodiversidade , Carbono/análise , Dieta , Ecossistema , Ácidos Graxos Insaturados/análise , Nutrientes/análise
19.
Biomolecules ; 9(9)2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540333

RESUMO

Dietary carbon sources in headwater stream food webs are divided into allochthonous and autochthonous organic matters. We hypothesized that: 1) the dietary allochthonous contribution for fish in headwater stream food webs positively relate with canopy cover; and 2) essential fatty acids originate from autochthonous organic matter regardless of canopy covers, because essential fatty acids, such as 20:5ω3 and 22:6ω3, are normally absent in allochthonous organic matters. We investigated predatory fish Salvelinus leucomaenis stomach contents in four headwater stream systems, which are located in subarctic region in northern Japan. In addition, stable carbon and nitrogen isotope ratios, fatty acid profile, and stable carbon isotope ratios of essential fatty acids were analyzed. Bulk stable carbon analysis showed the major contribution of autochthonous sources to assimilated carbon in S. leucomaenis. Surface baits in the stomach had intermediate stable carbon isotope ratios between autochthonous and allochthonous organic matter, indicating aquatic carbon was partly assimilated by surface baits. Stable carbon isotope ratios of essential fatty acids showed a positive relationship between autochthonous sources and S. leucomaenis across four study sites. This study demonstrated that the main supplier of dietary carbon and essential fatty acids was autochthonous organic matter even in headwater stream ecosystems under high canopy cover.


Assuntos
Carbono/análise , Ácidos Graxos Essenciais/análise , Estômago/química , Truta/fisiologia , Animais , Ecossistema , Cadeia Alimentar , Japão , Comportamento Predatório
20.
Mar Pollut Bull ; 94(1-2): 153-67, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25865345

RESUMO

Okinawa, Japan is known for its high marine biodiversity, yet little work has been performed on examining impacts of numerous large-scale coastal development projects on its marine ecosystems. Here, we examine apparent impacts of the construction of the Kaichu-Doro causeway, which was built over 40 years ago. The causeway is a 4.75 km long embankment that divides a large tidal flat and has only two points of water exchange along its entire length. We employed quadrats, transects, sampling, visual surveys, and microbial community analyses combined with environmental, water quality data, and 1m cores, at five stations of two paired sites each (one on each side of Kaichu-Doro) to investigate how the environment and biota have changed since the Kaichu-Doro was built. Results indicate reduction in water flow, and site S1 was particularly heavily impacted by poor water quality, with low diversity and disturbed biotic communities.


Assuntos
Ecossistema , Monitoramento Ambiental , Poluição da Água/estatística & dados numéricos , Biodiversidade , Biota , Indústria da Construção , Meio Ambiente , Sedimentos Geológicos , Japão , Medição de Risco , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA