Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 124(1): 295-308, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37466651

RESUMO

PURPOSE: Postprandial hyperglycemia is assumed to have a negative impact on flow-mediated dilation (FMD), an index of endothelial function, and blood flow of the peripheral conduit arteries. This study aimed to determine whether the enhancement of postprandial hyperglycemia by skipping breakfast accelerates endothelial dysfunction and reduces the blood flow in the brachial artery in young men. METHODS: Using a randomized cross-over design, ten healthy men completed two trials: with and without breakfast (Eating and Fasting trials, respectively). Venous blood sampling and brachial FMD tests were conducted before, 30, 60, 90, and 120 min after a 75-g oral glucose tolerance test (OGTT). RESULTS: Skipping breakfast boosted post-OGTT glucose levels than having breakfast (P = 0.01). The magnitude of the decrease in FMD via OGTT did not vary between trials (main effect of trial P = 0.55). Although brachial blood flow tended to decrease after OGTT in both trials (interaction and main effect of time P = 0.61 and P = 0.054, respectively), the decrease in blood flow following OGTT was greater in the Fasting trial than in the Eating trial (main effect of trial, mean difference = - 15.8 mL/min [95%CI = - 25.6 to - 6.0 mL/min], P < 0.01). CONCLUSION: Skipping breakfast did not enhance the magnitude of the decrease in FMD following glucose loading, but did accelerate hyperglycemia-induced reduction in brachial blood flow. Current findings suggest that even missing one breakfast has negative impacts on the blood flow regulation of the peripheral conduit arteries in young men who habitually eat breakfast.


Assuntos
Desjejum , Hiperglicemia , Humanos , Masculino , Glicemia , Artéria Braquial/fisiologia , Endotélio Vascular/fisiologia , Glucose , Vasodilatação/fisiologia , Estudos Cross-Over
2.
Eur J Appl Physiol ; 123(4): 781-796, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36454281

RESUMO

Excessive arterial pressure elevation induced by resistance exercise (RE) attenuates peripheral vasodilatory function, but its effect on cerebrovascular function is unknown. We aimed to evaluate the effect of different pressor responses to RE on hypercapnia-induced vasodilation of the internal carotid artery (ICA), an index of cerebrovascular function. To manipulate pressor responses to RE, 15 healthy young adults (11M/4F) performed two RE: high intensity with low repetitions (HL) and low intensity with high repetitions (LH) dynamic knee extension. ICA dilation, induced by 3 min of hypercapnia, was measured before and 10 min after RE using Doppler ultrasound. HL exercise elicited a greater pressor response than LH exercise. In relaxation phases of RE, ICA blood velocity increased in both HL and LH trials. However, ICA shear rate did not significantly increase in either trial (P = 0.06). Consequently, neither exercise altered post-exercise hypercapnia-induced ICA dilation (HL, 3.9 ± 1.9% to 5.1 ± 1.7%; LH, 4.6 ± 1.4% to 4.8 ± 1.8%; P > 0.05 for all). When viewed individually, the changes in ICA shear rate were positively correlated with changes in end-tidal partial pressure of carbon dioxide (PETCO2) (r = 0.46, P < 0.01) than with mean arterial pressure (r = 0.32, P = 0.02). These findings suggest that the effects of RE-induced pressor response on cerebrovascular function may be different from peripheral arteries. An increase in PETCO2 during the relaxation phase may play a more crucial role than elevated pressure in increasing cerebral shear during dynamic RE.


Assuntos
Hipercapnia , Treinamento Resistido , Humanos , Adulto Jovem , Dióxido de Carbono , Artéria Carótida Interna/fisiologia , Vasodilatação/fisiologia , Circulação Cerebrovascular/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
3.
Am J Physiol Heart Circ Physiol ; 320(2): H679-H689, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306444

RESUMO

This study aimed to elucidate the effects of change in estrogen during the menstrual cycle and menopause on shear-mediated dilation of the internal carotid artery (ICA), a potential index of cerebrovascular endothelial function. Shear-mediated dilation of the ICA and serum estradiol were measured in 11 premenopausal (Pre-M, 21 ± 1 yr), 13 perimenopausal (Peri-M, 49 ± 2 yr), and 10 postmenopausal (Post-M, 65 ± 7 yr) women. Measurements were made twice within the Pre-M group at their early follicular (EF, lower estradiol) and late follicular (LF, higher estradiol) phases. Shear-mediated dilation was induced by 3 min of hypercapnia (target PETCO2 + 10 mmHg from individual baseline) and was calculated as the percent rise in peak diameter relative to baseline diameter. ICA diameter and blood velocity were simultaneously measured by Doppler ultrasound. In Pre-M, shear-mediated dilation was higher during the LF phase than during the EF phase (P < 0.01). Comparing all groups, shear-mediated dilation was reduced across the menopausal transition (P < 0.01), and Pre-M during the LF phase showed the highest value (8.9 ± 1.4%) compared with other groups (Pre-M in EF, 6.4 ± 1.1%; Peri-M, 5.5 ± 1.3%; Post-M, 5.2 ± 1.9%, P < 0.05 for all). Shear-mediated dilation was positively correlated with serum estradiol even after adjustment of age (P < 0.01, r = 0.55, age-adjusted; P = 0.02, r = 0.35). Collectively, these data indicate that controlling the menstrual cycle phase is necessary for the cross-sectional assessments of shear-mediated dilation of the ICA in premenopausal women. Moreover, current findings suggest that a decline in cerebrovascular endothelial function may be partly related to the reduced circulating estrogen levels in peri- and postmenopausal women.NEW & NOTEWORTHY The present study evaluated the effects of the menstrual cycle and menopause stages on the shear-mediated dilation of the ICA, a potential index of cerebrovascular endothelial function, in pre-, peri-, and postmenopausal women. Shear-mediated dilation of the ICA was increased from the low- to high-estradiol phases in naturally cycling premenopausal women and was reduced with advancing menopause stages. Furthermore, lower estradiol was associated with reduced shear-mediated dilation of the ICA, independent of age.


Assuntos
Artéria Carótida Interna/fisiologia , Circulação Cerebrovascular , Estradiol/sangue , Menopausa/sangue , Ciclo Menstrual/sangue , Vasodilatação , Fatores Etários , Idoso , Velocidade do Fluxo Sanguíneo , Artéria Carótida Interna/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Perimenopausa/sangue , Pós-Menopausa/sangue , Pré-Menopausa/sangue , Fluxo Sanguíneo Regional , Estresse Mecânico , Ultrassonografia Doppler , Adulto Jovem
4.
Eur J Appl Physiol ; 121(9): 2471-2485, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34028613

RESUMO

PURPOSE: Exercise-induced increases in shear rate (SR) across different exercise intensities may differentially affect hypercapnia-induced vasodilation of the internal carotid artery (ICA), a potential index of cerebrovascular function. We aimed to elucidate the effects of exercise intensity on ICA SR during exercise and post-exercise hypercapnia-induced vasodilation of the ICA in young men. METHODS: Twelve healthy men completed 30 min of cycling at moderate [MIE; 65 ± 5% of age-predicted maximal heart rate (HRmax)] and high (HIE; 85 ± 5% HRmax) intensities. Hypercapnia-induced vasodilation was induced by 3 min of hypercapnia (target end-tidal partial pressure of CO2 + 10 mmHg) and was assessed at pre-exercise, 5 min and 60 min after exercise. Doppler ultrasound was used to measure ICA diameter and blood velocity during exercise and hypercapnia tests. RESULTS: SR was not altered during either exercise (interaction and main effects of time; both P > 0.05). ICA conductance decreased during HIE from resting values (5.1 ± 1.3 to 3.2 ± 1.0 mL·min-1·mmHg-1; P < 0.01) but not during MIE (5.0 ± 1.3 to 4.0 ± 0.8 mL·min-1·mmHg-1; P = 0.11). Consequently, hypercapnia-induced vasodilation declined immediately after HIE (6.9 ± 1.7% to 4.0 ± 1.4%; P < 0.01), but not after MIE (7.2 ± 2.1% to 7.3 ± 1.8%; P > 0.05). Sixty minutes after exercise, hypercapnia-induced vasodilation returned to baseline values in both trials (MIE 8.0 ± 3.1%; HIE 6.4 ± 2.9%; both P > 0.05). CONCLUSION: The present study showed blunted hypercapnia-induced vasodilation of the ICA immediately after high-intensity exercise, but not a moderate-intensity exercise in young men. Given that the acute response is partly linked to the adaptive response in the peripheral endothelial function, the effects of aerobic training on cerebrovascular health may vary depending on exercise intensity.


Assuntos
Artéria Carótida Interna/fisiologia , Exercício Físico/fisiologia , Hipercapnia/metabolismo , Vasodilatação/fisiologia , Circulação Cerebrovascular/fisiologia , Frequência Cardíaca , Humanos , Masculino , Adulto Jovem
5.
Eur J Appl Physiol ; 120(1): 161-169, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701274

RESUMO

PURPOSE: This study aimed to test our hypothesis that acute hypotension attenuates brachial flow-mediated dilation (FMD) as an index of endothelial function in healthy humans. METHODS: Twelve healthy men (21.8 ± 1.6 years, body mass index; 22.2 ± 1.6 kg/m2) participated in this study. Brachial FMD was measured in three trials: standardized FMD protocol (control trial), abrupt decrease in blood pressure (BP) via thigh cuff inflation-deflation (hypotension trial) and decrease in shear rate (SR) via a shortened forearm occlusion time (SR reduction trial). Brachial diameter and blood velocity were measured using Duplex ultrasound. RESULTS: Mean arterial pressure during reactive hyperaemia showed a marked decrease in the hypotension trial (- 23.7 ± 6.0 mmHg), but not in the control and SR reduction trials. SR area under the curve was attenuated in the SR reduction trial (P < 0.001), but not in the control and hypotension trials (P = 0.316). Consequently, FMD was attenuated in the hypotension and SR reduction trials compared with that in the control trial (P = 0.003 and P = 0.043, respectively), and was attenuated to a greater extent in the hypotension trial compared with the SR reduction trial (P = 0.006; control, 6.9 ± 3.5%; hypotension, 3.5 ± 1.7%; SR reduction, 5.0 ± 2.2%). After adjusting FMD using SR, FMD remained attenuated in the hypotension trial (P = 0.014), but not in the SR reduction trial. CONCLUSION: Our findings indicate that arterial pressure as well as sympathetic nervous system activation could be an important determinant of FMD. Blunted FMD of peripheral arteries may be a rational response to restore BP and/or prevent further reduction of BP following acute hypotension in healthy humans.


Assuntos
Pressão Arterial , Artéria Braquial/fisiologia , Hipotensão/fisiopatologia , Fluxo Sanguíneo Regional , Vasodilatação , Humanos , Masculino , Distribuição Aleatória , Sistema Nervoso Simpático/fisiologia , Adulto Jovem
7.
J Appl Physiol (1985) ; 136(3): 535-548, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153849

RESUMO

Exercise-induced increases in shear rate (SR) acutely improve peripheral endothelial function, but the presence of this mechanism in cerebral arteries remains unclear. Thus, we evaluated shear-mediated dilation of the internal carotid artery (ICA), which is an index of cerebrovascular endothelial function, before and after exercise. Shear-mediated dilation was measured with 30 s of hypercapnia in 16 young adults before and 10 min after 30 min of sitting rest (CON) or three cycling exercises on four separate days. The target exercise intensity was 80% of oxygen uptake at the ventilatory threshold. To manipulate the ICA SR during exercise, participants breathed spontaneously (ExSB, SR increase) or hyperventilated without (ExHV, no increase in SR) or with ([Formula: see text], restoration of SR increase) addition of CO2 to inspiratory air. Shear-mediated dilation was calculated as a percent increase in diameter from baseline. Doppler ultrasound measures ICA velocity and diameter. The CON trial revealed that 30 min of sitting did not alter shear-mediated dilation (4.34 ± 1.37% to 3.44 ± 1.23%, P = 0.052). ICA dilation after exercise compared with preexercise levels increased in the ExSB trial (3.32 ± 1.37% to 4.74 ± 1.84%, P < 0.01), remained unchanged in the ExHV trial (4.07 ± 1.55% to 3.21 ± 1.48%, P = 0.07), but was elevated in the [Formula: see text] trial (3.35 ± 1.15% to 4.33 ± 2.12%, P = 0.04). Our results indicate that exercise-induced increases in cerebral shear may play a crucial role in improving cerebrovascular endothelial function after acute exercise in young adults.NEW & NOTEWORTHY We found that 30-min cycling (target intensity was 80% of the ventilatory threshold) with increasing shear of the internal carotid artery (ICA) enhanced transient hypercapnia-induced shear-mediated dilation of the ICA, reflecting improved cerebrovascular endothelial function. This enhancement of ICA dilation was diminished by suppressing the exercise-induced increase in ICA shear via hyperventilation. Our results indicate that increases in cerebral shear may be a key stimulus for improving cerebrovascular endothelial function after exercise in young adults.


Assuntos
Hipercapnia , Vasodilatação , Humanos , Adulto Jovem , Dilatação/métodos , Velocidade do Fluxo Sanguíneo , Exercício Físico , Artéria Braquial , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA