Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 123(4): 186, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634933

RESUMO

Onchocerciasis is a devastating skin and eye disease that afflicts about 21 million people, most of whom live in sub-Saharan Africa. Its control with the microfilaricidal drug ivermectin is limited, thus necessitating the development of preclinical animal models to aid in the discovery of a macrofilaricide. Previously, we found that Onchocerca ochengi (the closest relative of the human O. volvulus) worm masses survive better in hamsters than in gerbils. The aim of this study was to compare the survival of O. ochengi adult male worms and their susceptibility to flubendazole (FBZ, a macrofilaricide) in gerbils and hamsters. The animals were intraperitoneally implanted with O. ochengi male worms, treated with FBZ, and sacrificed 35 days post-implantation. Unlike gerbils which had some worms moving freely in the peritoneum and some in newly formed nodules (neo-nodules), all the worms in the hamsters were found in neo-nodules. FBZ significantly decreased worm burden, motility, and viability in gerbils whereas it had no significant effect in hamsters. These results highlight a major difference in how O. ochengi adult male worms are sustained and affected by FBZ in gerbils compared to hamsters. Understanding the difference between these two models is important in the development of effective macrofilaricides for onchocerciasis.


Assuntos
Mebendazol/análogos & derivados , Onchocerca , Oncocercose , Adulto , Animais , Cricetinae , Humanos , Masculino , Gerbillinae
2.
Parasitol Res ; 122(7): 1581-1591, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37154921

RESUMO

Onchocerciasis, the second leading infectious cause of blindness, afflicts approximately 21 million people globally. Its control is limited to the use of the microfilaricidal drugs, ivermectin and moxidectin. Both drugs are unable to kill the adult worms which can survive for up to 15 years in patients, justifying the urgent need for potent and novel macrofilaricides that kill adult worms. The development of such drugs has been hindered by the lack of an appropriate small laboratory animal model to evaluate potential drug candidates in vivo. This study assessed the survival of O. ochengi female worms and their embryos over time in two laboratory rodents: gerbils and hamsters and tested using "proof-of-concept" studies, whether known macrofilaricidal drugs can kill these worms. Animals were surgically implanted with mechanical or collagenase-liberated O. ochengi worm masses, and necropsied at various time points to test for survival. Recovered worm masses were assessed for viability by biochemical analysis (MTT/formazan assay) or fecundity (embryogram). Flubendazole (FBZ) administered at 20 mg/kg body weight was used to validate both rodent models. By day 26 post-implantation of 15 worm masses, a median of 7.00 (4.00-10.00) was recovered from hamsters, and 2.50 (2.00-4.00) from gerbils. Worm masses recovered from gerbils were mostly disintegrated or fragmented, with significantly higher fragmentation observed with collagenase-liberated worm masses. FBZ had no significant effect on the number of worm masses recovered, but enhanced embryo degradation in gerbils and reduced worm mass viability in hamsters. This exploratory study has revealed the gerbil and hamster as permissible rodents to adult female worms of O. ochengi. The hamsters appeared to maintain the worms longer, compared to gerbils.


Assuntos
Filaricidas , Oncocercose , Cricetinae , Animais , Feminino , Onchocerca , Gerbillinae , Filaricidas/farmacologia , Ivermectina/uso terapêutico , Oncocercose/tratamento farmacológico
3.
PLoS Pathog ; 16(7): e1008623, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639986

RESUMO

Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.


Assuntos
Brugia pahangi/microbiologia , Filariose/microbiologia , Filaricidas/farmacologia , Rifampina/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Feminino , Gerbillinae
4.
J Clin Microbiol ; 59(6)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33762363

RESUMO

Confirmed diagnosis of chronic Chagas disease (CD) requires positive results by two different IgG serology tests. Variable sensitivity has been reported among tests and in different geographic regions. Inadequate specificity presents a particular challenge in low-prevalence settings such as the United States. This study provides a direct comparison of the latest-generation IgG serology assays with four previously assessed FDA-cleared tests. Seven hundred ten blood donor plasma specimens were evaluated by Wiener Lisado and Wiener v.4.0 enzyme-linked immunosorbent assays (ELISAs) and Abbott PRISM Chagas chemiluminescent assay (ChLIA). Sensitivity and specificity were assessed relative to infection status as determined by the original blood donation testing algorithm. All three latest-generation assays demonstrated 100% specificity (95% confidence interval [CI], 98.6 to 100.0). Wiener Lisado, Wiener v.4.0, and Abbott PRISM had sensitivities of 97.1% (95% CI, 95.1 to 98.4), 98.9% (95% CI, 97.4 to 99.6), and 95.5% (95% CI, 93.2 to 97.3), respectively. As with previously evaluated FDA-cleared tests, all three assays had the highest reactivity and sensitivity in samples from donors born in South America and lowest reactivity and sensitivity in specimens from those born in Mexico, with intermediate results in specimens from Central American donors. Wiener v.4.0 had the highest diagnostic sensitivity in all comparisons. Our findings suggest that the latest-generation CD serology tests could improve diagnostic sensitivity without affecting specificity.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Anticorpos Antiprotozoários , Doença de Chagas/diagnóstico , Ensaio de Imunoadsorção Enzimática , Humanos , México , Sensibilidade e Especificidade , Testes Sorológicos , América do Sul
5.
Molecules ; 25(21)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139647

RESUMO

Neglected parasitic diseases remain a major public health issue worldwide, especially in tropical and subtropical areas. Human parasite diversity is very large, ranging from protozoa to worms. In most cases, more effective and new drugs are urgently needed. Previous studies indicated that the gold(I) drug auranofin (Ridaura®) is effective against several parasites. Among new gold(I) complexes, the phosphole-containing gold(I) complex {1-phenyl-2,5-di(2-pyridyl)phosphole}AuCl (abbreviated as GoPI) is an irreversible inhibitor of both purified human glutathione and thioredoxin reductases. GoPI-sugar is a novel 1-thio-ß-d-glucopyranose 2,3,4,6-tetraacetato-S-derivative that is a chimera of the structures of GoPI and auranofin, designed to improve stability and bioavailability of GoPI. These metal-ligand complexes are of particular interest because of their combined abilities to irreversibly target the essential dithiol/selenol catalytic pair of selenium-dependent thioredoxin reductase activity, and to kill cells from breast and brain tumors. In this work, screening of various parasites-protozoans, trematodes, and nematodes-was undertaken to determine the in vitro killing activity of GoPI-sugar compared to auranofin. GoPI-sugar was found to efficiently kill intramacrophagic Leishmania donovani amastigotes and adult filarial and trematode worms.


Assuntos
Anti-Helmínticos , Antineoplásicos , Antiprotozoários , Auranofina , Complexos de Coordenação , Ouro , Helmintíase/tratamento farmacológico , Neoplasias/tratamento farmacológico , Infecções por Protozoários/tratamento farmacológico , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Auranofina/química , Auranofina/farmacologia , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Avaliação de Medicamentos , Ouro/química , Ouro/farmacologia , Helmintíase/metabolismo , Helmintíase/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Infecções por Protozoários/metabolismo , Infecções por Protozoários/patologia
6.
J Clin Microbiol ; 57(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31511333

RESUMO

Chagas disease affects an estimated 300,000 individuals in the United States. Diagnosis in the chronic phase requires positive results from two different IgG serological tests. Three enzyme-linked immunosorbent assays (ELISAs) (Hemagen, Ortho, and Wiener) and one rapid test (InBios) are FDA cleared, but comparative data in U.S. populations are sparse. We evaluated 500 seropositive and 300 seronegative blood donor plasma samples. Country of birth was known for 255 seropositive specimens, which were grouped into regions as follows: Mexico (n = 94), Central America (n = 88), and South America (n = 73). Specimens were tested by the four FDA-cleared IgG serological assays. Test performance was evaluated by two comparators and latent class analysis. InBios had the highest sensitivity (97.4% to 99.3%) but the lowest specificity (87.5% to 92.3%). Hemagen had the lowest sensitivity (88.0% to 92.0%) but high specificity (99.0% to 100.0%). The level of sensitivity was intermediate for Ortho (92.4% to 96.5%) and Wiener (94.0% to 97.1%); both had high specificity (98.8% to 100.0% and 96.7% to 99.3%, respectively). The levels of antibody reactivity and clinical sensitivity were lowest in donors from Mexico, intermediate in those from Central America, and highest in those from South America. Our findings provide an initial evidence base to improve laboratory diagnosis of Chagas disease in the United States. The best current testing algorithm would employ a high-sensitivity screening test followed by a high-specificity confirmatory test.


Assuntos
Anticorpos Antiprotozoários/sangue , Doadores de Sangue , Doença de Chagas/diagnóstico , Testes Sorológicos/métodos , América Central , Feminino , Humanos , Masculino , Sensibilidade e Especificidade , América do Sul
7.
Pharmaceutics ; 16(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399310

RESUMO

Onchocerciasis and lymphatic filariasis are two neglected tropical diseases caused by filarial nematodes that utilize insect vectors for transmission to their human hosts. Current control strategies are based on annual or biannual mass drug administration (MDA) of the drugs Ivermectin or Ivermectin plus Albendazole, respectively. These drug regimens kill the first-stage larvae of filarial worms (i.e., microfilariae) and interrupt the transmission of infections. MDA programs for these microfilaricidal drugs must be given over the lifetime of the filarial adult worms, which can reach 15 years in the case of Onchocerca volvulus. This is problematic because of suboptimal responses to ivermectin in various endemic regions and inefficient reduction of transmission even after decades of MDA. There is an urgent need for the development of novel alternative treatments to support the 2030 elimination goals of onchocerciasis and lymphatic filariasis. One successful approach has been to target Wolbachia, obligatory endosymbiotic bacteria on which filarial worms are dependent for their survival and reproduction within the human host. A 4-6-week antibiotic therapy with doxycycline, for example, resulted in the loss of Wolbachia that subsequently led to extensive apoptosis of somatic cells, germline, embryos, and microfilariae, as well as inhibition of fourth-stage larval development. However, this long-course regimen has limited use in MDA programs. As an alternative approach to the use of bacteriostatic antibiotics, in this study, we focused on autophagy-inducing compounds, which we hypothesized could disturb various pathways involved in the interdependency between Wolbachia and filarial worms. We demonstrated that several such compounds, including Niclosamide, an FDA-approved drug, Niclosamide ethanolamine (NEN), and Rottlerin, a natural product derived from Kamala trees, significantly reduced the levels of Wolbachia in vitro. Moreover, when these compounds were used in vivo to treat Brugia pahangi-infected gerbils, Niclosamide and NEN significantly decreased adult worm survival, reduced the release of microfilariae, and decreased embryonic development depending on the regimen and dose used. All three drugs given orally significantly reduced Wolbachia loads and induced an increase in levels of lysosome-associated membrane protein in worms from treated animals, suggesting that Niclosamide, NEN, and Rottlerin were effective in causing drug-induced autophagy in these filarial worms. These repurposed drugs provide a new avenue for the clearance of adult worms in filarial infections.

8.
Biosci Rep ; 44(1)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38108122

RESUMO

Human glutamate carboxypeptidase 2 (GCP2) from the M28B metalloprotease group is an important target for therapy in neurological disorders and an established tumor marker. However, its physiological functions remain unclear. To better understand general roles, we used the model organism Caenorhabditis elegans to genetically manipulate its three existing orthologous genes and evaluate the impact on worm physiology. The results of gene knockout studies showed that C. elegans GCP2 orthologs affect the pharyngeal physiology, reproduction, and structural integrity of the organism. Promoter-driven GFP expression revealed distinct localization for each of the three gene paralogs, with gcp-2.1 being most abundant in muscles, intestine, and pharyngeal interneurons, gcp-2.2 restricted to the phasmid neurons, and gcp-2.3 located in the excretory cell. The present study provides new insight into the unique phenotypic effects of GCP2 gene knockouts in C. elegans, and the specific tissue localizations. We believe that elucidation of particular roles in a non-mammalian organism can help to explain important questions linked to physiology of this protease group and in extension to human GCP2 involvement in pathophysiological processes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/genética , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Regiões Promotoras Genéticas , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
9.
ACS Infect Dis ; 10(3): 938-950, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329933

RESUMO

The search for new anti-infectives based on metal complexes is gaining momentum. Among the different options taken by researchers, the one involving the use of organometallic complexes is probably the most successful one with a compound, namely, ferroquine, already in clinical trials against malaria. In this study, we describe the preparation and in-depth characterization of 10 new (organometallic) derivatives of the approved antifungal drug fluconazole. Our rationale is that the sterol 14α-demethylase is an enzyme part of the ergosterol biosynthesis route in Trypanosoma and is similar to the one in pathogenic fungi. To demonstrate our postulate, docking experiments to assess the binding of our compounds with the enzyme were also performed. Our compounds were then tested on a range of fungal strains and parasitic organisms, including the protozoan parasite Trypanosoma cruzi (T. cruzi) responsible for Chagas disease, an endemic disease in Latin America that ranks among some of the most prevalent parasitic diseases worldwide. Of high interest, the two most potent compounds of the study on T. cruzi that contain a ferrocene or cobaltocenium were found to be harmless for an invertebrate animal model, namely, Caenorhabditis elegans (C. elegans), without affecting motility, viability, or development.


Assuntos
Fluconazol , Trypanosoma cruzi , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Metalocenos , Antiparasitários/farmacologia , Caenorhabditis elegans , Inibidores de 14-alfa Desmetilase/química , Trypanosoma cruzi/química
10.
Front Microbiol ; 15: 1346068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362501

RESUMO

Lymphatic filariasis and onchocerciasis are two major neglected tropical diseases that are responsible for causing severe disability in 50 million people worldwide, whilst veterinary filariasis (heartworm) is a potentially lethal parasitic infection of companion animals. There is an urgent need for safe, short-course curative (macrofilaricidal) drugs to eliminate these debilitating parasite infections. We investigated combination treatments of the novel anti-Wolbachia azaquinazoline small molecule, AWZ1066S, with benzimidazole drugs (albendazole or oxfendazole) in up to four different rodent filariasis infection models: Brugia malayi-CB.17 SCID mice, B. malayi-Mongolian gerbils, B. pahangi-Mongolian gerbils, and Litomosoides sigmodontis-Mongolian gerbils. Combination treatments synergised to elicit threshold (>90%) Wolbachia depletion from female worms in 5 days of treatment, using 2-fold lower dose-exposures of AWZ1066S than monotherapy. Short-course lowered dose AWZ1066S-albendazole combination treatments also delivered partial adulticidal activities and/or long-lasting inhibition of embryogenesis, resulting in complete transmission blockade in B. pahangi and L. sigmodontis gerbil models. We determined that short-course AWZ1066S-albendazole co-treatment significantly augmented the depletion of Wolbachia populations within both germline and hypodermal tissues of B. malayi female worms and in hypodermal tissues in male worms, indicating that anti-Wolbachia synergy is not limited to targeting female embryonic tissues. Our data provides pre-clinical proof-of-concept that sub-seven-day combinations of rapid-acting novel anti-Wolbachia agents with benzimidazole anthelmintics are a promising curative and transmission-blocking drug treatment strategy for filarial diseases of medical and veterinary importance.

11.
Antimicrob Agents Chemother ; 57(12): 6063-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24060869

RESUMO

Cryptosporidiosis, caused by the protozoan parasite Cryptosporidium parvum, can stunt infant growth and can be lethal in immunocompromised individuals. The most widely used drugs for treating cryptosporidiosis are nitazoxanide and paromomycin, although both exhibit limited efficacy. To investigate an alternative approach to therapy, we demonstrate that the clan CA cysteine protease inhibitor N-methyl piperazine-Phe-homoPhe-vinylsulfone phenyl (K11777) inhibits C. parvum growth in mammalian cell lines in a concentration-dependent manner. Further, using the C57BL/6 gamma interferon receptor knockout (IFN-γR-KO) mouse model, which is highly susceptible to C. parvum, oral or intraperitoneal treatment with K11777 for 10 days rescued mice from otherwise lethal infections. Histologic examination of untreated mice showed intestinal inflammation, villous blunting, and abundant intracellular parasite stages. In contrast, K11777-treated mice (210 mg/kg of body weight/day) showed only minimal inflammation and no epithelial changes. Three putative protease targets (termed cryptopains 1 to 3, or CpaCATL-1, -2, and -3) were identified in the C. parvum genome, but only two are transcribed in infected mammals. A homology model predicted that K11777 would bind to cryptopain 1. Recombinant enzymatically active cryptopain 1 was successfully targeted by K11777 in a competition assay with a labeled active-site-directed probe. K11777 exhibited no toxicity in vitro and in vivo, and surviving animals remained free of parasites 3 weeks after treatment. The discovery that a cysteine protease inhibitor provides potent anticryptosporidial activity in an animal model of infection encourages the investigation and development of this biocide class as a new, and urgently needed, chemotherapy for cryptosporidiosis.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Compostos de Vinila/farmacologia , Administração Oral , Animais , Antiprotozoários/química , Criptosporidiose/mortalidade , Criptosporidiose/parasitologia , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/enzimologia , Cryptosporidium parvum/crescimento & desenvolvimento , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Dipeptídeos/química , Esquema de Medicação , Feminino , Injeções Intraperitoneais , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Fenilalanina/análogos & derivados , Piperazinas , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Análise de Sobrevida , Compostos de Tosil , Compostos de Vinila/química , Receptor de Interferon gama
12.
PLoS Negl Trop Dis ; 17(2): e0011135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36827447

RESUMO

BACKGROUND: Onchocerciasis (river blindness) caused by the filarial worm Onchocerca volvulus is a neglected tropical disease that affects the skin and eyes of humans. Mass drug administration with ivermectin (IVM) to control the disease often suffers from severe adverse events in individuals co-injected with high loads of Loa loa microfilariae (mf). Thus loiasis animal models for counter-screening of compounds effective against onchocerciasis are needed, as are the corresponding onchocerciasis screening models. The repertoire of such models is highly limiting. Therefore, this study was aimed at developing and validating mf immunocompetent small animal models to increase tools for onchocerciasis drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: O. ochengi mf from cattle skin and L. loa mf from human blood were used to infect BALB/c mice and Mongolian gerbils, and IVM was used for model validation. O. ochengi mf were given subcutaneously to both rodents while L. loa mf were administered intravenously to mice and intraperitoneally to gerbils. IVM was given orally. In an 8-day model of O. ochengi mf in BALB/c mice, treatment with IVM depleted all mf in the mice, unlike the controls. Also, in a 2.5-day model of L. loa mf in BALB/c, IVM significantly reduced mf in treated mice compared to the untreated. Furthermore, the gerbils were very susceptible to O. ochengi mf and IVM eradicated all mf in the treated animals. In the peritoneal L. loa mf gerbil model, IVM reduced mf motility in treated animals compared to the controls. In a 30-day gerbil co-injection model, IVM treatment cleared all O. ochengi mf and reduced motility of L. loa mf. Both mf survived for up to 50 days in a gerbil co-injection model. CONCLUSIONS/SIGNIFICANCE: We have developed two immunocompetent small animal models for onchocerciasis and loiasis that can be used for microfilaricide discovery and to counter-screen onchocerciasis macrofilarides.


Assuntos
Filaricidas , Loíase , Oncocercose , Humanos , Bovinos , Animais , Camundongos , Oncocercose/tratamento farmacológico , Oncocercose/diagnóstico , Gerbillinae , Filaricidas/farmacologia , Ivermectina/efeitos adversos , Modelos Animais , Loa , Microfilárias
13.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425761

RESUMO

Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens including fungal infections. Since these diseases target the most vulnerable communities who are disadvantaged by health and socio-economic factors, new agents should be, if possible, easy-to-prepare to allow for commercialization based on their low cost. In this study, we show that simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and NTDs targeted for elimination by 2030. Overall, the discovery of these new compounds with broad-spectrum activity opens new avenues for the development of treatments for several current human infections, either caused by fungi or by parasites, including other NTDs, as well as newly emerging diseases. ONE-SENTENCE SUMMARY: Simple derivatives of the well-known antifungal drug fluconazole were found to be highly effective in vivo against fungal infections, and also potent against the parasitic nematode Brugia, which causes lymphatic filariasis and against Trichuris, one of the soil-transmitted helminths that infects millions of people globally.

14.
J Med Chem ; 66(23): 15867-15882, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38009931

RESUMO

Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens, including fungal infections. Herein, we show that the simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from that of the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and neglected tropical diseases (NTDs) targeted for elimination by 2030.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Doenças Negligenciadas/tratamento farmacológico , Fluconazol , Micoses/tratamento farmacológico
15.
Pathogens ; 11(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745561

RESUMO

The current treatments for lymphatic filariasis and onchocerciasis do not effectively kill the adult parasitic nematodes, allowing these chronic and debilitating diseases to persist in millions of people. Thus, the discovery of new drugs with macrofilaricidal potential to treat these filarial diseases is critical. To facilitate this need, we first investigated the effects of three aspartyl protease inhibitors (APIs) that are FDA-approved as HIV antiretroviral drugs on the adult filarial nematode, Brugia malayi and the endosymbiotic bacteria, Wolbachia. From the three hits, nelfinavir had the best potency with an IC50 value of 7.78 µM, followed by ritonavir and lopinavir with IC50 values of 14.3 µM and 16.9 µM, respectively. The three APIs have a direct effect on killing adult B. malayi after 6 days of exposure in vitro and did not affect the Wolbachia titers. Sequence conservation and stage-specific gene expression analysis identified Bm8660 as the most likely primary aspartic protease target for these drug(s). Immunolocalization using antibodies raised against the Bm8660 ortholog of Onchocerca volvulus showed it is strongly expressed in female B. malayi, especially in metabolically active tissues such as lateral and dorsal/ventral chords, hypodermis, and uterus tissue. Global transcriptional response analysis using adult female B. pahangi treated with APIs identified four additional aspartic proteases differentially regulated by the three effective drugs, as well as significant enrichment of various pathways including ubiquitin mediated proteolysis, protein kinases, and MAPK/AMPK/FoxO signaling. In vitro testing against the adult gastro-intestinal nematode Trichuris muris suggested broad-spectrum potential for these APIs. This study suggests that APIs may serve as new leads to be further explored for drug discovery to treat parasitic nematode infections.

16.
Redox Biol ; 51: 102278, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276442

RESUMO

Enzymes in the thiol redox systems of microbial pathogens are promising targets for drug development. In this study we characterized the thioredoxin reductase (TrxR) selenoproteins from Brugia malayi and Onchocerca volvulus, filarial nematode parasites and causative agents of lymphatic filariasis and onchocerciasis, respectively. The two filarial enzymes showed similar turnover numbers and affinities for different thioredoxin (Trx) proteins, but with a clear preference for the autologous Trx. Human TrxR1 (hTrxR1) had a high and similar specific activity versus the human and filarial Trxs, suggesting that, in vivo, hTrxR1 could possibly be the reducing agent of parasite Trxs once they are released into the host. Both filarial TrxRs were efficiently inhibited by auranofin and by a recently described inhibitor of human TrxR1 (TRi-1), but not as efficiently by the alternative compound TRi-2. The enzyme from B. malayi was structurally characterized also in complex with NADPH and auranofin, producing the first crystallographic structure of a nematode TrxR. The protein represents an unusual fusion of a mammalian-type TrxR protein architecture with an N-terminal glutaredoxin-like (Grx) domain lacking typical Grx motifs. Unlike thioredoxin glutathione reductases (TGRs) found in platyhelminths and mammals, which are also Grx-TrxR domain fusion proteins, the TrxRs from the filarial nematodes lacked glutathione disulfide reductase and Grx activities. The structural determinations revealed that the Grx domain of TrxR from B. malayi contains a cysteine (C22), conserved in TrxRs from clade IIIc nematodes, that directly interacts with the C-terminal cysteine-selenocysteine motif of the homo-dimeric subunit. Interestingly, despite this finding we found that altering C22 by mutation to serine did not affect enzyme catalysis. Thus, although the function of the Grx domain in these filarial TrxRs remains to be determined, the results obtained provide insights on key properties of this important family of selenoprotein flavoenzymes that are potential drug targets for treatment of filariasis.


Assuntos
Brugia Malayi , Onchocerca volvulus , Parasitos , Animais , Auranofina/farmacologia , Brugia Malayi/metabolismo , Cisteína/metabolismo , Humanos , Mamíferos/metabolismo , Onchocerca volvulus/genética , Onchocerca volvulus/metabolismo , Oxirredução , Parasitos/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
17.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215301

RESUMO

Onchocerciasis and lymphatic filariasis are neglected tropical diseases caused by infection with filarial worms. Annual or biannual mass drug administration with microfilaricidal drugs that kill the microfilarial stages of the parasites has helped reduce infection rates and thus prevent transmission of both infections. However, success depends on high population coverage that is maintained for the duration of the adult worm's lifespan. Given that these filarial worms can live up to 14 years in their human hosts, a macrofilaricidal drug would vastly accelerate elimination efforts. Here, we have evaluated the repurposed drug pyrvinium pamoate as well as newly synthesized analogs of pyrvinium for their efficacy against filarial worms in vitro and in vivo. We found that pyrvinium pamoate, tetrahydropyrvinium and one of the analogs were highly potent in inhibiting worms in in vitro whole-worm screening assays, and that all three compounds reduced female worm fecundity and inhibited embryogenesis in the Brugia pahangi-gerbil in vivo model of infection.

18.
ACS Infect Dis ; 7(2): 206-214, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33492932

RESUMO

Helminths represent a diverse category of parasitic organisms that can thrive within a host for years, if not decades, in the absence of treatment. As such, they must establish mechanisms to subsist off their hosts, evade the immune system, and develop a niche among the other cohabiting microbial communities. The complex interplay of biologically small molecules (collectively known as the metabolome) derived from, utilized by, or in response to the presence of helminths within a host is an emerging field of study. In this Perspective, we briefly summarize the current existing literature, categorize key host-pathogen-microbiome interfaces that could be studied in the context of the metabolome, and provide background on mass spectrometry-based metabolomic methodology. Overall, we hope to provide a comprehensive guide for utilizing metabolomics in the context of helminthic disease.


Assuntos
Helmintíase , Helmintos , Parasitos , Animais , Metaboloma , Metabolômica
19.
PLoS Negl Trop Dis ; 15(2): e0009064, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600426

RESUMO

Several issues have been identified with the current programs for the elimination of onchocerciasis that target only transmission by using mass drug administration (MDA) of the drug ivermectin. Alternative and/or complementary treatment regimens as part of a more comprehensive strategy to eliminate onchocerciasis are needed. We posit that the addition of "prophylactic" drugs or therapeutic drugs that can be utilized in a prophylactic strategy to the toolbox of present microfilaricidal drugs and/or future macrofilaricidal treatment regimens will not only improve the chances of meeting the elimination goals but may hasten the time to elimination and also will support achieving a sustained elimination of onchocerciasis. These "prophylactic" drugs will target the infective third- (L3) and fourth-stage (L4) larvae of Onchocerca volvulus and consequently prevent the establishment of new infections not only in uninfected individuals but also in already infected individuals and thus reduce the overall adult worm burden and transmission. Importantly, an effective prophylactic treatment regimen can utilize drugs that are already part of the onchocerciasis elimination program (ivermectin), those being considered for MDA (moxidectin), and/or the potential macrofilaricidal drugs (oxfendazole and emodepside) currently under clinical development. Prophylaxis of onchocerciasis is not a new concept. We present new data showing that these drugs can inhibit L3 molting and/or inhibit motility of L4 at IC50 and IC90 that are covered by the concentration of these drugs in plasma based on the corresponding pharmacological profiles obtained in human clinical trials when these drugs were tested using various doses for the therapeutic treatments of various helminth infections.


Assuntos
Filaricidas/farmacologia , Leucócitos Mononucleares/parasitologia , Onchocerca volvulus/efeitos dos fármacos , Animais , Benzimidazóis/farmacologia , Depsipeptídeos/farmacologia , Humanos , Ivermectina/farmacologia , Larva/efeitos dos fármacos , Macrolídeos/farmacologia , Onchocerca volvulus/crescimento & desenvolvimento , Oncocercose/tratamento farmacológico , Oncocercose/prevenção & controle
20.
Parasit Vectors ; 14(1): 118, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627171

RESUMO

BACKGROUND: Onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) are two human neglected tropical diseases that cause major disabilities. Mass administration of drugs targeting the microfilarial stage has reduced transmission and eliminated these diseases in several countries but a macrofilaricidal drug that kills or sterilizes the adult worms is critically needed to eradicate the diseases. The causative agents of onchocerciasis and lymphatic filariasis are filarial worms that harbor the endosymbiotic bacterium Wolbachia. Because filarial worms depend on Wolbachia for reproduction and survival, drugs targeting Wolbachia hold great promise as a means to eliminate these diseases. METHODS: To better understand the relationship between Wolbachia and its worm host, adult Brugia pahangi were exposed to varying concentrations of doxycycline, minocycline, tetracycline and rifampicin in vitro and assessed for Wolbachia numbers and worm motility. Worm motility was monitored using the Worminator system, and Wolbachia titers were assessed by qPCR of the single copy gene wsp from Wolbachia and gst from Brugia to calculate IC50s and in time course experiments. Confocal microscopy was also used to quantify Wolbachia located at the distal tip region of worm ovaries to assess the effects of antibiotic treatment in this region of the worm where Wolbachia are transmitted vertically to the microfilarial stage. RESULTS: Worms treated with higher concentrations of antibiotics had higher Wolbachia titers, i.e. as antibiotic concentrations increased there was a corresponding increase in Wolbachia titers. As the concentration of antibiotic increased, worms stopped moving and never recovered despite maintaining Wolbachia titers comparable to controls. Thus, worms were rendered moribund by the higher concentrations of antibiotics but Wolbachia persisted suggesting that these antibiotics may act directly on the worms at high concentration. Surprisingly, in contrast to these results, antibiotics given at low concentrations reduced Wolbachia titers. CONCLUSION: Wolbachia in B. pahangi display a counterintuitive dose response known as the "Eagle effect." This effect in Wolbachia suggests a common underlying mechanism that allows diverse bacterial and fungal species to persist despite exposure to high concentrations of antimicrobial compounds. To our knowledge this is the first report of this phenomenon occurring in an intracellular endosymbiont, Wolbachia, in its filarial host.


Assuntos
Brugia Malayi/fisiologia , Microfilárias/microbiologia , Onchocerca/fisiologia , Simbiose , Wolbachia/fisiologia , Animais , Antibacterianos/farmacologia , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/microbiologia , Doxiciclina/farmacologia , Feminino , Masculino , Microfilárias/efeitos dos fármacos , Microfilárias/fisiologia , Onchocerca/efeitos dos fármacos , Onchocerca/microbiologia , Simbiose/efeitos dos fármacos , Wolbachia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA