Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 56(4): 580-94, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25457167

RESUMO

Constitutive heterochromatin is typically defined by high levels of DNA methylation and H3 lysine 9 trimethylation (H3K9Me3), whereas facultative heterochromatin displays DNA hypomethylation and high H3 lysine 27 trimethylation (H3K27Me3). The two chromatin types generally do not coexist at the same loci, suggesting mutual exclusivity. During development or in cancer, pericentromeric regions can adopt either epigenetic state, but the switching mechanism is unknown. We used a quantitative locus purification method to characterize changes in pericentromeric chromatin-associated proteins in mouse embryonic stem cells deficient for either the methyltransferases required for DNA methylation or H3K9Me3. DNA methylation controls heterochromatin architecture and inhibits Polycomb recruitment. BEND3, a protein enriched on pericentromeric chromatin in the absence of DNA methylation or H3K9Me3, allows Polycomb recruitment and H3K27Me3, resulting in a redundant pathway to generate repressive chromatin. This suggests that BEND3 is a key factor in mediating a switch from constitutive to facultative heterochromatin.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/fisiologia , Inativação Gênica , Heterocromatina/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Núcleo Celular/metabolismo , Células Cultivadas , Centrômero/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células-Tronco Embrionárias/fisiologia , Loci Gênicos , Histonas/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Repetições de Microssatélites , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteínas Repressoras , Ubiquitina-Proteína Ligases , DNA Metiltransferase 3B
2.
Genes Dev ; 27(18): 2009-24, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24065767

RESUMO

Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Cromatina/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Células HeLa , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Metilação , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
3.
Mol Cell ; 33(2): 257-65, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19187766

RESUMO

The HBO1 HAT protein is the major source of histone H4 acetylation in vivo and has been shown to play critical roles in gene regulation and DNA replication. A distinctive characteristic of HBO1 HAT complexes is the presence of three PHD finger domains in two different subunits: tumor suppressor proteins ING4/5 and JADE1/2/3. Biochemical and functional analyses indicate that these domains interact with histone H3 N-terminal tail region, but with a different specificity toward its methylation status. Their combinatorial action is essential in regulating chromatin binding and substrate specificity of HBO1 complexes, as well as cell growth. Importantly, localization analyses on the human genome indicate that HBO1 complexes are enriched throughout the coding regions of genes, supporting a role in transcription elongation. These results underline the importance and versatility of PHD finger domains in regulating chromatin association and histone modification crosstalk within a single protein complex.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Sítios de Ligação , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células HeLa , Histona Acetiltransferases/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Metilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nat Struct Mol Biol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448574

RESUMO

JADE is a core subunit of the HBO1 acetyltransferase complex that regulates developmental and epigenetic programs and promotes gene transcription. Here we describe the mechanism by which JADE facilitates recruitment of the HBO1 complex to chromatin and mediates its enzymatic activity. Structural, genomic and complex assembly in vivo studies show that the PZP (PHD1-zinc-knuckle-PHD2) domain of JADE engages the nucleosome through binding to histone H3 and DNA and is necessary for the association with chromatin targets. Recognition of unmethylated H3K4 by PZP directs enzymatic activity of the complex toward histone H4 acetylation, whereas H3K4 hypermethylation alters histone substrate selectivity. We demonstrate that PZP contributes to leukemogenesis, augmenting transforming activity of the NUP98-JADE2 fusion. Our findings highlight biological consequences and the impact of the intact JADE subunit on genomic recruitment, enzymatic function and pathological activity of the HBO1 complex.

5.
Circulation ; 123(11): 1205-15, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21382889

RESUMO

BACKGROUND: Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype required the activation of a prosurvival transcription factor like signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T cell (NFAT). Because these factors are implicated in several physiological processes, their inhibition in PAH patients could be associated with detrimental effects. Therefore, a better understanding of the mechanism accounting for their expression/activation in PAH pulmonary artery smooth muscle cells is of great therapeutic interest. METHODS AND RESULTS: Using multidisciplinary and translational approaches, we demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the expression of both NFATc2 and the oncoprotein kinase Pim1, which trigger NFATc2 activation. Because Pim1 expression correlates with the severity of PAH in humans and is confined to the PAH pulmonary artery smooth muscle cell, Pim1 was identified as an attractive therapeutic target for PAH. Indeed, specific Pim1 inhibition in vitro decreases pulmonary artery smooth muscle cell proliferation and promotes apoptosis, all of which are sustained by NFATc2 inhibition. In vivo, tissue-specific inhibition of Pim1 by nebulized siRNA reverses monocrotaline-induced PAH in rats, whereas Pim1 knockout mice are resistant to PAH development. CONCLUSION: We demonstrated for the first time that inhibition of the inappropriate activation of STAT3/Pim1 axis is a novel, specific, and attractive therapeutic strategy to reverse PAH.


Assuntos
Hipertensão Pulmonar/etiologia , Proteínas Proto-Oncogênicas c-pim-1/fisiologia , Fator de Transcrição STAT3/fisiologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Humanos , Mitocôndrias/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Fatores de Transcrição NFATC/fisiologia , Artéria Pulmonar/metabolismo , Ratos
6.
Cells ; 11(15)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35954237

RESUMO

About half of the mammalian genome is constituted of repeated elements, among which endogenous retroviruses (ERVs) are known to influence gene expression and cancer development. The HP1 (Heterochromatin Protein 1) proteins are known to be essential for heterochromatin establishment and function and its loss in hepatocytes leads to the reactivation of specific ERVs and to liver tumorigenesis. Here, by studying two ERVs located upstream of genes upregulated upon loss of HP1, Mbd1 and Trim24, we show that these HP1-dependent ERVs behave as either alternative promoters or as putative enhancers forming a loop with promoters of endogenous genes depending on the genomic context and HP1 expression level. These ERVs are characterised by a specific HP1-independent enrichment in heterochromatin-associated marks H3K9me3 and H4K20me3 as well as in the enhancer-specific mark H3K4me1, a combination that might represent a bookmark of putative ERV-derived enhancers. These ERVs are further enriched in a HP1-dependent manner in H3K27me3, suggesting a critical role of this mark together with HP1 in the silencing of the ERVs, as well as for the repression of the associated genes. Altogether, these results lead to the identification of a new regulatory hub involving the HP1-dependent formation of a physical loop between specific ERVs and endogenous genes.


Assuntos
Retrovirus Endógenos , Animais , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Retrovirus Endógenos/genética , Expressão Gênica , Heterocromatina , Mamíferos/genética
7.
Mol Microbiol ; 71(1): 212-26, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19017266

RESUMO

The ability of living cells to alter their gene expression patterns in response to environmental changes is essential for viability. Oxidative stress represents a common threat for all aerobic life. In normally growing cells, in which hydrogen peroxide generation is transient or pulsed, the antioxidant systems efficiently control its concentration. Intracellular parasites must also protect themselves against the oxidative burst imposed by the host. In this work, we have investigated the role of KMTox, a new histone lysine methyltransferase, in the obligate intracellular parasite Toxoplasma gondii. KMTox is a nuclear protein that holds a High Mobility Group domain, which is thought to recognize bent DNA. The enzyme methylates both histones H4 and H2A in vitro with a great preference for the substrate in reduced conditions. Importantly, KMTox interacts specifically with the typical 2-cys peroxiredoxin-1 and the binding is to some extent enhanced upon oxidation. It appears that the cellular functions that are primarily regulated by the KMTox are antioxidant defences and maintenance of cellular homeostasis. KMTox may regulate gene expression in T. gondii by providing the rapid re-arrangement of chromatin domains and by interacting with the redox-sensor TgPrx1 contribute to establish the antioxidant 'firewall' in T. gondii.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Animais , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Protozoários/genética , RNA de Protozoário/genética , Toxoplasma/efeitos dos fármacos , Toxoplasma/genética
8.
Oncogene ; 39(13): 2676-2691, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020053

RESUMO

Chromatin organization is essential for appropriate interpretation of the genetic information. Here, we demonstrated that the chromatin-associated proteins HP1 are dispensable for hepatocytes survival but are essential within hepatocytes to prevent liver tumor development in mice with HP1ß being pivotal in these functions. Yet, we found that the loss of HP1 per se is not sufficient to induce cell transformation but renders cells more resistant to specific stress such as the expression of oncogenes and thus in fine, more prone to cell transformation. Molecular characterization of HP1-Triple KO premalignant livers and BMEL cells revealed that HP1 are essential for the maintenance of heterochromatin organization and for the regulation of specific genes with most of them having well characterized functions in liver functions and homeostasis. We further showed that some specific retrotransposons get reactivated upon loss of HP1, correlating with overexpression of genes in their neighborhood. Interestingly, we found that, although HP1-dependent genes are characterized by enrichment H3K9me3, this mark does not require HP1 for its maintenance and is not sufficient to maintain gene repression in absence of HP1. Finally, we demonstrated that the loss of TRIM28 association with HP1 recapitulated several phenotypes induced by the loss of HP1 including the reactivation of some retrotransposons and the increased incidence of liver cancer development. Altogether, our findings indicate that HP1 proteins act as guardians of liver homeostasis to prevent tumor development by modulating multiple chromatin-associated events within both the heterochromatic and euchromatic compartments, partly through regulation of the corepressor TRIM28 activity.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Modelos Animais de Doenças , Feminino , Hepatócitos , Heterocromatina/metabolismo , Humanos , Fígado/citologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica/genética , RNA-Seq , Retroelementos/genética , Proteína 28 com Motivo Tripartido/metabolismo
9.
Sci Adv ; 5(5): eaav3673, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31086817

RESUMO

Alternative lengthening of telomeres, or ALT, is a recombination-based process that maintains telomeres to render some cancer cells immortal. The prevailing view is that ALT is inhibited by heterochromatin because heterochromatin prevents recombination. To test this model, we used telomere-specific quantitative proteomics on cells with heterochromatin deficiencies. In contrast to expectations, we found that ALT does not result from a lack of heterochromatin; rather, ALT is a consequence of heterochromatin formation at telomeres, which is seeded by the histone methyltransferase SETDB1. Heterochromatin stimulates transcriptional elongation at telomeres together with the recruitment of recombination factors, while disrupting heterochromatin had the opposite effect. Consistently, loss of SETDB1, disrupts telomeric heterochromatin and abrogates ALT. Thus, inhibiting telomeric heterochromatin formation in ALT cells might offer a new therapeutic approach to cancer treatment.


Assuntos
Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Encurtamento do Telômero , Telômero/metabolismo , Animais , Linhagem Celular Tumoral , Chaperonas de Histonas/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Metiltransferases/deficiência , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína Nuclear Ligada ao X/metabolismo
10.
Cell Stem Cell ; 24(1): 123-137.e8, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472157

RESUMO

The pluripotent ground state is defined as a basal state free of epigenetic restrictions, which influence lineage specification. While naive embryonic stem cells (ESCs) can be maintained in a hypomethylated state with open chromatin when grown using two small-molecule inhibitors (2i)/leukemia inhibitory factor (LIF), in contrast to serum/LIF-grown ESCs that resemble early post-implantation embryos, broader features of the ground-state pluripotent epigenome are not well understood. We identified epigenetic features of mouse ESCs cultured using 2i/LIF or serum/LIF by proteomic profiling of chromatin-associated complexes and histone modifications. Polycomb-repressive complex 2 (PRC2) and its product H3K27me3 are highly abundant in 2i/LIF ESCs, and H3K27me3 is distributed genome-wide in a CpG-dependent fashion. Consistently, PRC2-deficient ESCs showed increased DNA methylation at sites normally occupied by H3K27me3 and increased H4 acetylation. Inhibiting DNA methylation in PRC2-deficient ESCs did not affect their viability or transcriptome. Our findings suggest a unique H3K27me3 configuration protects naive ESCs from lineage priming, and they reveal widespread epigenetic crosstalk in ground-state pluripotency.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Complexo Repressor Polycomb 2/metabolismo , Proteoma/análise , Animais , Diferenciação Celular , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional
11.
Mol Cell Biol ; 25(23): 10301-14, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16287846

RESUMO

Pathogenic apicomplexan parasites like Toxoplasma and Plasmodium (malaria) have complex life cycles consisting of multiple stages. The ability to differentiate from one stage to another requires dramatic transcriptional changes, yet there is a paucity of transcription factors in these protozoa. In contrast, we show here that Toxoplasma possesses extensive chromatin remodeling machinery that modulates gene expression relevant to differentiation. We find that, as in other eukaryotes, histone acetylation and arginine methylation are marks of gene activation in Toxoplasma. We have identified mediators of these histone modifications, as well as a histone deacetylase (HDAC), and correlate their presence at target promoters in a stage-specific manner. We purified the first HDAC complex from apicomplexans, which contains novel components in addition to others previously reported in eukaryotes. A Toxoplasma orthologue of the arginine methyltransferase CARM1 appears to work in concert with the acetylase TgGCN5, which exhibits an unusual bias for H3 [K18] in vitro. Inhibition of TgCARM1 induces differentiation, showing that the parasite life cycle can be manipulated by interfering with epigenetic machinery. This may lead to new approaches for therapy against protozoal diseases and highlights Toxoplasma as an informative model to study the evolution of epigenetics in eukaryotic cells.


Assuntos
Regulação da Expressão Gênica , Histonas/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/genética , Acetilação , Animais , Arginina/metabolismo , Cistos/genética , Cistos/metabolismo , Cistos/parasitologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Metilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Repressoras/isolamento & purificação , Proteínas Repressoras/metabolismo , Ativação Transcricional
12.
Mutat Res ; 618(1-2): 81-90, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17306843

RESUMO

The packaging of the eukaryotic genome into highly condensed chromatin makes it inaccessible to the factors required for gene transcription, DNA replication, recombination and repair. Eukaryotes have developed intricate mechanisms to overcome this repressive barrier imposed by chromatin. Histone modifying enzymes and ATP-dependent chromatin remodeling complexes play key roles here as they regulate many nuclear processes by altering the chromatin structure. Significantly, these activities are integral to the process of DNA repair where histone modifications act as signals and landing platforms for various repair proteins. This review summarizes the recent developments in our understanding of histone modifications and their role in the maintenance of genome integrity.


Assuntos
Montagem e Desmontagem da Cromatina , Dano ao DNA , Reparo do DNA , Animais , Cromatina/metabolismo , Cromossomos/ultraestrutura , Empacotamento do DNA , Replicação do DNA , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleossomos , Processamento de Proteína Pós-Traducional , Transcrição Gênica
13.
Methods Mol Biol ; 1550: 19-33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28188520

RESUMO

The biological functions of given genomic regions are ruled by the local chromatin composition. The Proteomics of Isolated Chromatin segments approach (PICh) is a powerful and unbiased method to analyze the composition of chosen chromatin segments, provided they are abundant (repeated) or that the organism studied has a small genome. PICh can be used to identify novel and unexpected regulatory factors, or when combined with quantitative mass spectrometric approaches, to characterize the function of a defined factor at the chosen locus, by quantifying composition changes at the locus upon removal/addition of that factor.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteínas/química , Proteínas/isolamento & purificação , Proteoma , Proteômica/métodos , Técnicas de Cultura de Células , Células Cultivadas , Cromatina/isolamento & purificação , Imunoprecipitação da Cromatina/métodos , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Espectrometria de Massas , Hibridização de Ácido Nucleico/métodos , Sequências Repetitivas de Ácido Nucleico , Telômero , Fluxo de Trabalho
14.
Biochem J ; 389(Pt 1): 63-72, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15766331

RESUMO

CPS (capsular polysaccharide) is a major virulence factor in Streptococcus pneumoniae. Biosynthesis of CPS RU (repeat unit) proceeds by sequential transfer of sugar residues from the appropriate sugar donor to an activated lipid carrier by committed GTs (glycosyltransferases). While the nucleotide sequence of many cps loci is already known, the real substrate specificity of the hypothetical GTs, as well as the sequence of sugar addition is unclear. In the present paper, we report the biochemical characterization of one alpha-galactosyltransferase, WciS (Cap8H), a member of GT family 4. This enzyme is implicated in the tetrasaccharide RU biosynthetic pathway of Strep. pneumoniae CPS 8 ([-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->4)-beta-D-Glcp-(1-->]n). Expression of WciS-His6 in Escherichia coli BL21 (DE3) strains or BL21 (DE3)/DeltagalU strain resulted in synthesis of a 39 kDa membrane-associated protein identified by N-terminal sequencing and recognized by anti-His6-tag antibody. This protein was capable of adding a galactose residue cellobiuronic acid [beta-D-GlcAp-(1-->4)-D-Glcp]-pyrophosphate-polyprenol from UDP-Gal. The newly added galactose residue is removed by alpha-galactosidase, indicating that WciS is a retaining GT. Our results suggest that WciS catalyses the addition of the third sugar residue of the CPS 8 RU. The recombinant WciS-His6 was solubilized and purified as a soluble multimer, opening the way for structural studies.


Assuntos
Cápsulas Bacterianas/metabolismo , Galactosiltransferases/metabolismo , Polissacarídeos Bacterianos/biossíntese , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/metabolismo , Cápsulas Bacterianas/biossíntese , Sequência de Carboidratos , Membrana Celular/metabolismo , Clonagem Molecular , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosiltransferases/química , Galactosiltransferases/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glicosilação , Estrutura Quaternária de Proteína , Streptococcus pneumoniae/enzimologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-25788984

RESUMO

Constitutive heterochromatin, mainly formed at the gene-poor regions of pericentromeres, is believed to ensure a condensed and transcriptionally inert chromatin conformation. Pericentromeres consist of repetitive tandem satellite repeats and are crucial chromosomal elements that are responsible for accurate chromosome segregation in mitosis. The repeat sequences are not conserved and can greatly vary between different organisms, suggesting that pericentromeric functions might be controlled epigenetically. In this review, we will discuss how constitutive heterochromatin is formed and maintained at pericentromeres in order to ensure their integrity. We will describe the biogenesis and the function of main epigenetic pathways that are involved and how they are interconnected. Interestingly, recent findings suggest that alternative pathways could substitute for well-established pathways when disrupted, suggesting that constitutive heterochromatin harbors much more plasticity than previously assumed. In addition, despite of the heterochromatic nature of pericentromeres, there is increasing evidence for active and regulated transcription at these loci, in a multitude of organisms and under various biological contexts. Thus, in the second part of this review, we will address this relatively new aspect and discuss putative functions of pericentromeric expression.

17.
Mol Cell Biol ; 32(3): 689-703, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22144582

RESUMO

Acetyltransferase complexes of the MYST family with distinct substrate specificities and functions maintain a conserved association with different ING tumor suppressor proteins. ING complexes containing the HBO1 acetylase are a major source of histone H3 and H4 acetylation in vivo and play critical roles in gene regulation and DNA replication. Here, our molecular dissection of HBO1/ING complexes unravels the protein domains required for their assembly and function. Multiple PHD finger domains present in different subunits bind the histone H3 N-terminal tail with a distinct specificity toward lysine 4 methylation status. We show that natively regulated association of the ING4/5 PHD domain with HBO1-JADE determines the growth inhibitory function of the complex, linked to its tumor suppressor activity. Functional genomic analyses indicate that the p53 pathway is a main target of the complex, at least in part through direct transcription regulation at the initiation site of p21/CDKN1A. These results demonstrate the importance of ING association with MYST acetyltransferases in controlling cell proliferation, a regulated link that accounts for the reported tumor suppressor activities of these complexes.


Assuntos
Proliferação de Células , Histona Acetiltransferases/metabolismo , Linhagem Celular , Histona Acetiltransferases/química , Histonas/química , Histonas/metabolismo , Humanos , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Quinases Ativadas por p21/química , Quinases Ativadas por p21/metabolismo
18.
J Exp Med ; 208(3): 535-48, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21321078

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Because microRNAs have been recently implicated in the regulation of cell proliferation and apoptosis, we hypothesized that these regulatory molecules might be implicated in the etiology of PAH. In this study, we show that miR-204 expression in PASMCs is down-regulated in both human and rodent PAH. miR-204 down-regulation correlates with PAH severity and accounts for the proliferative and antiapoptotic phenotypes of PAH-PASMCs. STAT3 activation suppresses miR-204 expression, and miR-204 directly targets SHP2 expression, thereby SHP2 up-regulation, by miR-204 down-regulation, activates the Src kinase and nuclear factor of activated T cells (NFAT). STAT3 also directly induces NFATc2 expression. NFAT and SHP2 were needed to sustain PAH-PASMC proliferation and resistance to apoptosis. Finally, delivery of synthetic miR-204 to the lungs of animals with PAH significantly reduced disease severity. This study uncovers a new regulatory pathway involving miR-204 that is critical to the etiology of PAH and indicates that reestablishing miR-204 expression should be explored as a potential new therapy for this disease.


Assuntos
MicroRNAs/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células , Hipertensão Pulmonar Primária Familiar , Regulação da Expressão Gênica , Marcadores Genéticos/genética , Marcadores Genéticos/fisiologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Masculino , Camundongos , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Análise de Sequência com Séries de Oligonucleotídeos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Quinases da Família src/fisiologia
19.
Nat Struct Mol Biol ; 16(1): 17-22, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19079264

RESUMO

Induction of gene expression in yeast and human cells involves changes in the histone modifications associated with promoters. Here we identify a histone H3 endopeptidase activity in Saccharomyces cerevisiae that may regulate these events. The endopeptidase cleaves H3 after Ala21, generating a histone that lacks the first 21 residues and shows a preference for H3 tails carrying repressive modifications. In vivo, the H3 N terminus is clipped, specifically within the promoters of genes following the induction of transcription. H3 clipping precedes the process of histone eviction seen when genes become fully active. A truncated H3 product is not generated in yeast carrying a mutation of the endopeptidase recognition site (H3 Q19A L20A) and gene induction is defective in these cells. These findings identify clipping of H3 tails as a previously uncharacterized modification of promoter-bound nucleosomes, which may result in the localized clearing of repressive signals during the induction of gene expression.


Assuntos
Endopeptidases/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Genes Fúngicos , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
20.
Microbes Infect ; 11(12): 935-45, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19563907

RESUMO

Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.


Assuntos
Divisão Celular , Fosfoproteínas Fosfatases/fisiologia , Toxoplasma/fisiologia , Animais , Linhagem Celular , Núcleo Celular/química , Chlorocebus aethiops , Citoplasma/química , Humanos , Fosfoproteínas Fosfatases/análise , Proteína Fosfatase 2C , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA