Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012334

RESUMO

Poloxamer hydrogel possesses thermosensitive sol-gel transition characteristics and is widely used as a drug-controlled-release carrier for topical or injectable formulations. In this study, the effect of loading of a drug, acetaminophen (ACE), on the physical and structural properties of poloxamer 407 (P407) micelles and hydrogels was investigated. Differential scanning calorimetry measurements revealed that ACE reduced the critical micelle temperature and enthalpy of micellization of P407 solutions. The P407 micellization was promoted by ACE incorporation. Rheometry showed that ACE increased the sol-gel transition temperature and reduced the gel strength of P407. In situ small-angle X-ray scattering (SAXS) using synchrotron radiation revealed that ACE altered the structure of P407 micelles and their packing in the P407 gels. As ACE concentration increased, the P407 micelle packing changed from a face-centered cubic phase to a body-centered cubic phase. Furthermore, ACE disordered the micelle packing structure and induced the formation of an amorphous phase. Structural analysis of the P407 micelle packing indicated that ACE reduced the aggregation number (Nagg) of P407 micelles in the gels. The SAXS study for diluted P407 solutions revealed that ACE reduced the P407 micelle size and its uniformity. The structural changes in P407 micelles by ACE loading (e.g., the reduction of Nagg, size, and size uniformity) would alter the micelle packing structure. It was found that these structural changes of micelle packing, especially the formation of an amorphous phase, could destabilize the P407 gel. As a result, the physical properties of P407 gels, such as gelation temperature and gel strength, were changed. This relationship between the structure and physical property of drug-loaded P407 gels was well-explained by correlating the micelle and gel structures. The mechanistic understanding of the change in the physical properties of P407 gels by drug loading is essential for the effective development of poloxamer gel formulations.

2.
Mol Pharm ; 20(9): 4729-4742, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37606988

RESUMO

1H NMR relaxometry was applied for molecular-level structural analysis of siRNA-loaded lipid nanoparticles (LNPs) to clarify the impact of the neutral lipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol, on the physicochemical properties of LNP. Incorporating DSPC and cholesterol in ionizable lipid-based LNP decreased the molecular mobility of ionizable lipids. DSPC reduced the overall molecular mobility of ionizable lipids, while cholesterol specifically decreased the mobility of the hydrophobic tails of ionizable lipids, suggesting that cholesterol filled the gap between the hydrophobic tails of ionizable lipids. The decrease in molecular mobility and change in orientation of lipid mixtures contributed to the maintenance of the stacked bilayer structure of siRNA and ionizable lipids, thereby increasing the siRNA encapsulation efficiency. Furthermore, NMR relaxometry revealed that incorporating those neutral lipids enhanced PEG chain flexibility at the LNP interface. Notably, a small amount of DSPC effectively increased PEG chain flexibility, possibly contributing to the improved dispersion stability and narrower size distribution of LNPs. However, cryogenic transmission electron microscopy represented that adding excess amounts of DSPC and cholesterol into LNP resulted in the formation of deformed particles and demixing cholesterol within the LNP, respectively. The optimal lipid composition of ionizable lipid-based LNPs in terms of siRNA encapsulation efficiency and PEG chain flexibility was rationalized based on the molecular-level characterization of LNPs. Moreover, the NMR relaxation rate of tertiary amine protons of ionizable lipids, which are the interaction site with siRNA, can be a valuable indicator of the encapsulated amount of siRNA within LNPs. Thus, NMR-based analysis can be a powerful tool for efficiently designing LNP formulations and their quality control based on the molecular-level elucidation of the physicochemical properties of LNPs.


Assuntos
Imageamento por Ressonância Magnética , Prótons , RNA Interferente Pequeno , Espectroscopia de Prótons por Ressonância Magnética
3.
J Phys Chem Lett ; : 7909-7915, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066786

RESUMO

Poloxamer 407 (P407) is used as a safety-guaranteed, invaluable pharmaceutical nanocarrier. The aqueous solution of P407 exhibits sol-to-gel and gel-to-sol transitions, specifically during a temperature rise. Here, we develop a method to determine the pair potential between colloidal particles based primarily on experimental small-angle scattering data. Using this approach, the pair potential between the P407 micelles in the sol-gel-sol transition state is revealed without prelimiting any type of interaction forces. The results indicate that the increase in the attractive interaction contributes to enhancing the volume fraction, which is the decisive parameter for the gelation in terms of the Alder transition theory, i.e., the fluid-to-crystal phase transition of the hard-sphere model in the micelle system. This study demonstrates that one of the key mechanisms of the gel-to-sol transition upon heating is the enhancement of the structural fluctuation due to widening of the potential well in the intermicellar pair potential.

4.
J Control Release ; 373: 738-748, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39053648

RESUMO

This study aimed to assess the applicability of solution-state 1H NMR for molecular-level characterization of siRNA-loaded lipid nanoparticles (LNP). Dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA, MC3) was used as an ionizable lipid, and siRNA-loaded LNPs were prepared by pre-mixing and post-mixing methods. The pre-mixing method involved mixing an acidic solution containing siRNA with an ethanolic lipid solution using a microfluidic mixer. The pre-mixed LNP was prepared by dialyzing the mixed solution into the phosphate buffered saline (PBS, pH 7.4). The post-mixed LNP was prepared by mixing the siRNA solution with empty LNP in an acidic condition with and without ethanol, resulting in post-mixed LNP (A) and (B), respectively. Both pre-mixed and post-mixed LNPs formed LNP particles with an average diameter of approximately 50 nm. Moreover, the ratio of encapsulated siRNA to lipid content in each LNP particle remained constant regardless of the preparation method. However, small-angle X-ray scattering measurements indicated structural variations in the siRNA-MC3 stacked bilayer structure formed in the LNPs, depending on the preparation method. Solution-state 1H NMR analysis suggested that the siRNA was incorporated uniformly into the LNP core for pre-mixed LNP compared to post-mixed LNPs. In contrast, the post-mixed LNPs contained siRNA-empty regions with local enrichment of siRNA in the LNP core. This heterogeneity was more pronounced in post-mixed LNP (B) than in post-mixed LNP (A), suggesting that ethanol facilitated the homogeneous mixing of siRNA with LNP lipids. The silencing effect of each siRNA-loaded LNP was reduced in the order of pre-mixed LNP, post-mixed LNP (A), and post-mixed LNP (B). This suggested that the heterogeneity of the siRNA-loaded LNP could cause a reduction in the silencing effect of the incorporated siRNA inside LNPs. The present study highlighted that NMR-based characterization of siRNA-loaded LNP can reveal the molecular-level heterogeneity of siRNA-loaded LNP, which helps to optimize the preparation conditions of siRNA-loaded LNP formulations.

5.
Food Funct ; 14(23): 10493-10505, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37938858

RESUMO

Flavonoids often exhibit broad bioactivity but low solubility and bioavailability, limiting their practical applications. The transglycosylated materials α-glucosyl rutin (Rutin-G) and α-glucosyl hesperidin (Hsp-G) are known to enhance the dissolution of hydrophobic compounds, such as flavonoids and other polyphenols. In this study, the effects of these materials on flavone solubilization were investigated by probing their interactions with flavone in aqueous solutions. Rutin-G and Hsp-G prepared via solvent evaporation and spray-drying methods were evaluated for their ability to dissolve flavones. Rutin-G had a stronger flavone-solubilizing effect than Hsp-G in both types of composite particles. The origin of this difference in behavior was elucidated by small-angle X-ray scattering (SAXS) and nuclear magnetic resonance analyses. The different self-association structures of Rutin-G and Hsp-G were supported by SAXS analysis, which proved that Rutin-G formed polydisperse aggregates, whereas Hsp-G formed core-shell micelles. The observation of nuclear Overhauser effects (NOEs) between flavone and α-glucosyl materials suggested the existence of intermolecular hydrophobic interactions. However, flavone interacted with different regions of Rutin-G and Hsp-G. In particular, NOE correlations were observed between the protons of flavone and the α-glucosyl protons of Rutin-G. The different molecular association states of Rutin-G or Hsp-G could be responsible for their different effects on the solubility of flavone. A better understanding of the mechanism of flavone solubility enhancement via association with α-glucosyl materials would permit the application of α-glucosyl materials to the solubilization of other hydrophobic compounds including polyphenols such as flavonoids.


Assuntos
Flavonas , Hesperidina , Hesperidina/química , Rutina/química , Difração de Raios X , Prótons , Espalhamento a Baixo Ângulo , Flavonoides , Espectroscopia de Ressonância Magnética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA