Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(7): 2097-2111, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37151187

RESUMO

Endodormancy (ED) is a crucial stage in the life cycle of many perennial plants. ED release requires accumulating a certain amount of cold exposure, measured as chilling units. However, the mechanism governing the effect of chilling on ED duration is poorly understood. We used the potato tuber model to investigate the response to chilling as associated with ED release. We measured the accumulation of specific sugars during and after chilling, defined as sugar units. We discovered that ED duration correlated better with sugar units accumulation than chilling units. A logistic function was developed based on sugar units measurements to predict ED duration. Knockout or overexpression of the vacuolar invertase gene (StVInv) unexpectedly modified sugar units levels and extended or shortened ED, respectively. Silencing the energy sensor SNF1-related protein kinase 1, induced higher sugar units accumulation and shorter ED. Sugar units accumulation induced by chilling or transgenic lines reduced plasmodesmal (PD) closure in the dormant bud meristem. Chilling or knockout of abscisic acid (ABA) 8'-hydroxylase induced ABA accumulation, in parallel to sweetening, and antagonistically promoted PD closure. Our results suggest that chilling induce sugar units and ABA accumulation, resulting in antagonistic signals for symplastic connection of the dormant bud.


Assuntos
Solanum tuberosum , Açúcares , Açúcares/metabolismo , Ácido Abscísico/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Carboidratos , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 185(4): 1708-1721, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793932

RESUMO

Shoot branching is an important aspect of plant architecture because it substantially affects plant biology and agricultural performance. Sugars play an important role in the induction of shoot branching in several species, including potato (Solanum tuberosum L.). However, the mechanism by which sugars affect shoot branching remains mostly unknown. In the present study, we addressed this question using sugar-mediated induction of bud outgrowth in potato stems under etiolated conditions. Our results indicate that sucrose feeding to detached stems promotes the accumulation of cytokinin (CK), as well as the expression of vacuolar invertase (VInv), an enzyme that contributes to sugar sink strength. These effects of sucrose were suppressed by CK synthesis and perception inhibitors, while CK supplied to detached stems induced bud outgrowth and VInv activity in the absence of sucrose. CK-induced bud outgrowth was suppressed in vinv mutants, which we generated by genome editing. Altogether, our results identify a branching-promoting module, and suggest that sugar-induced lateral bud outgrowth is in part promoted by the induction of CK-mediated VInv activity.


Assuntos
Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Variação Genética , Genótipo , Israel , Mutação , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
3.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367004

RESUMO

During nonventilated storage of carrots, CO2 gradually accumulates to high levels and causes modifications in the carrot's microbiome toward dominance of Lactobacillales and Enterobacteriales The lactic acid bacterium Leuconostoc mesenteroides secretes a slimy exudate over the surface of the carrots. The objective of this study was to characterize the slime components and the potential cause for its secretion under high CO2 levels. A proteomic analysis of the exudate revealed bacterial glucosyltransferases as the main proteins, specifically, dextransucrase. A chemical analysis of the exudate revealed high levels of dextran and several simple sugars. The exudate volume and dextran amount were significantly higher when L. mesenteroides was incubated under high CO2 levels than when incubated in an aerated environment. The treatment of carrot medium plates with commercial dextransucrase or exudate protein extract resulted in similar sugar profiles and dextran production. Transcriptome analysis demonstrated that dextran production is related to the upregulation of the L. mesenteroides dextransucrase-encoding genes dsrD and dsrT during the first 4 to 8 h of exposure to high CO2 levels compared to aerated conditions. A phylogenetic analysis of L. mesenteroides YL48 dsrD revealed a high similarity to other dsr genes harbored by different Leuconostoc species. The ecological benefit of dextran production under elevated CO2 requires further investigation. However, this study implies an overlooked role of CO2 in the physiology and fitness of L. mesenteroides in stored carrots, and perhaps in other food items, during storage under nonventilated conditions.IMPORTANCE The bacterium Leuconostoc mesenteroides is known to cause spoilage of different types of foods by secreting a slimy fluid that damages the quality and appearance of the produce. Here, we identified a potential mechanism by which high levels of CO2 affect the spoilage caused by this bacterium by upregulating dextran synthesis genes. These results have broader implications for the study of the physiology, degradation ability, and potential biotechnological applications of Leuconostoc.


Assuntos
Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Glucosiltransferases/genética , Leuconostoc mesenteroides/genética , Regulação para Cima , Proteínas de Bactérias/metabolismo , Daucus carota/microbiologia , Dextranos/biossíntese , Dextranos/genética , Armazenamento de Alimentos , Genes Bacterianos , Glucosiltransferases/metabolismo , Leuconostoc mesenteroides/enzimologia , Filogenia
4.
Mol Plant Microbe Interact ; 31(5): 548-559, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29298127

RESUMO

Acidovorax citrulli is the causal agent of bacterial fruit blotch of cucurbits. We have shown that functional type IV pili (T4P) are required for full virulence of this bacterium. To identify A. citrulli genes required for T4P activity, we screened a library of about 10,000 transposon mutants of A. citrulli M6 for altered T4P-mediated twitching motility. This screen led to the identification of 50 mutants impaired in twitching ability due to transposon insertions into 20 different genes. Representative mutants with disruptions in these genes were further characterized. All mutants were compromised in their virulence in seed transmission and stem inoculation assays and had reduced biofilm formation ability relative to wild-type M6. When grown on nutrient agar, most mutants produced colonies with a translucent and fuzzy appearance, in contrast to the opaque and smooth appearance of wild-type colonies. The colony morphology of these mutants was identical to that of previously reported phenotypic variants of strain M6. The exceptions were M6 mutants disrupted in genes tonB, pilT, pilW, and pilX that exhibited typical wild-type colony morphology, although lacking twitching haloes surrounding the colony. Transmission electron microscopy revealed that most mutants lacked the ability to produce T4P. The exceptions were mutants with disruptions in tonB, pilT, pilW, and pilX genes that were shown to produce these appendages. These findings support the idea that colony phenotypic variation in A. citrulli is determined by the lack of ability to synthesize T4P but not by lack of T4P functionality.


Assuntos
Comamonadaceae/fisiologia , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comamonadaceae/citologia , Comamonadaceae/genética , Teste de Complementação Genética , Mutação
5.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180363

RESUMO

A simple method for the synthesis of nanoparticles (NPs) of silver (Ag) in a matrix of bovine submaxillary mucin (BSM) was reported previously by some of the authors of this study. Based on mucin characteristics such as long-lasting stability, water solubility, and surfactant and adhesive characteristics, we hypothesized that these compounds, named BSM-Ag NPs, may possess favorable properties as potent antimicrobial agents. The goal of this study was to assess whether BSM-Ag NPs possess antibacterial activity, focusing on important plant-pathogenic bacterial strains representing both Gram-negative (Acidovorax and Xanthomonas) and Gram-positive (Clavibacter) genera. Growth inhibition and bactericidal assays, as well as electron microscopic observations, demonstrate that BSM-Ag NPs, at relatively low concentrations of silver, exert strong antimicrobial effects. Moreover, we show that treatment of melon seeds with BSM-Ag NPs effectively prevents seed-to-seedling transmission of Acidovorax citrulli, one of the most threatening pathogens of cucurbit production worldwide. Overall, our findings demonstrate strong antimicrobial activity of BSM-Ag NPs and their potential application for reducing the spread and establishment of devastating bacterial plant diseases in agriculture.IMPORTANCE Bacterial plant diseases challenge agricultural production, and the means available to manage them are limited. Importantly, many plant-pathogenic bacteria have the ability to colonize seeds, and seed-to-seedling transmission is a critical route by which bacterial plant diseases spread to new regions and countries. The significance of our study resides in the following aspects: (i) the simplicity of the method of BSM-Ag NP synthesis, (ii) the advantageous chemical properties of BSM-Ag NPs, (iii) the strong antibacterial activity of BSM-Ag NPs at relatively low concentrations of silver, and (iv) the fact that, in contrast to most studies on the effects of metal NPs on plant pathogens, the proof of concept for the novel compound is supported by in planta assays. Application of this technology is not limited to agriculture; BSM-Ag NPs potentially could be exploited as a potent antimicrobial agent in a wide range of industrial areas, including medicine, veterinary medicine, cosmetics, textiles, and household products.


Assuntos
Antibacterianos/farmacologia , Comamonadaceae/efeitos dos fármacos , Nanopartículas Metálicas/química , Mucinas/farmacologia , Plântula/efeitos dos fármacos , Prata/farmacologia , Animais , Bovinos , Comamonadaceae/patogenicidade , Testes de Sensibilidade Microbiana , Mucinas/química , Estudo de Prova de Conceito , Plântula/microbiologia , Sementes/microbiologia , Prata/química
6.
Plant Physiol ; 175(2): 734-745, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28860154

RESUMO

The potato (Solanum tuberosum) tuber is a swollen stem. Sprouts growing from the tuber nodes represent loss of apical dominance and branching. Long cold storage induces loss of tuber apical dominance and results in secondary branching. Here, we show that a similar branching pattern can be induced by short heat treatment of the tubers. Detached sprouts were induced to branch by the heat treatment only when attached to a parenchyma cylinder. Grafting experiments showed that the scion branches only when grafted onto heat- or cold-treated tuber parenchyma, suggesting that the branching signal is transmitted systemically from the bud-base parenchyma to the grafted stem. Exogenous supply of sucrose (Suc), glucose, or fructose solution to detached sprouts induced branching in a dose-responsive manner, and an increase in Suc level was observed in tuber parenchyma upon branching induction, suggesting a role for elevated parenchyma sugars in the regulation of branching. However, sugar analysis of the apex and node after grafting showed no distinct differences in sugar levels between branching and nonbranching stems. Vacuolar invertase is a key enzyme in determining the level of Suc and its cleavage products, glucose and fructose, in potato parenchyma. Silencing of the vacuolar invertase-encoding gene led to increased tuber branching in combination with branching-inducing treatments. These results suggest that Suc in the parenchyma induces branching through signaling and not by excess mobilization from the parenchyma to the stem.


Assuntos
Estiolamento/fisiologia , Transdução de Sinais , Solanum tuberosum/fisiologia , Sacarose/farmacologia , beta-Frutofuranosidase/metabolismo , Frutose/farmacologia , Glucose/farmacologia , Células do Mesofilo , Proteínas de Plantas/metabolismo , Caules de Planta/fisiologia , Tubérculos/fisiologia , Vacúolos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA